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Abstract

This Master’s thesis explores approximations of utility indifference prices for a contingent claim written

on a nontraded asset in both a small and large position size limit. For position sizes in the small claim

limit, optimal hedging strategies are established in a basis risk model. Up to first order, they differ

only in the magnitude of a Delta hedge term from the ones derived in the complete market. By this, the

deviation of the resulting average utility indifference price from the standard Black-Scholes price becomes

negligible. The large position approach is established in a general stochastic factor model. It is shown

that as the position size approaches infinity, the utility function’s decay rate for large negative wealths

is the primary driver of prices. Moreover, prices are studied in the large claim limit, where, in contrast

to the small position approach, not only the claim quantity is allowed to vary but also the markets. By

the requirement to the markets of becoming asymptotically complete, it will be shown that, depending

on the growth rate of the position size, different limiting prices show up, which may differ significantly

from the arbitrage-free Black-Scholes price. All the investigations are affirmed by several examples for

power and exponential utility.
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Chapter 1

Introduction and Motivation

The problem of pricing claims in an incomplete market framework is one of the main challenges in

Mathematical Finance and still extensively researched and studied worldwide. The theory of pricing

claims under market completeness goes back to the famous Black-Scholes model developed by Fischer

Black and Myron S. Scholes (further evolved by Robert C. Merton) which has been awarded with the

Nobel price in the year 1997. This approach uses the core idea of replicating the claim in order to

eliminate any risk and from this deriving a unique, arbitrage-free price. Later, this model and its (strong)

assumptions (such as constant volatility, log-normal stock returns, continuous paths of the underlying

price process, etc.) have been relaxed and led to numerous models, still widely used and accepted in the

industry.

Nevertheless, in reality, we do not have complete markets due to several sources of risk, transaction

costs, information asymmetry, illiquidity, market regulations – to list just a few reasons. Mathematically

speaking, the perfect replication of the claims is not anymore feasible and there is still some unhedgeable

risk left. Therefore, there is not anymore a unique price but a whole interval of possible, arbitrage-free,

prices.

It is therefore crucial to include the agent’s aversion towards this remaining uncertainty into the model

and based on this, determine the price which the agent is willing to pay. This leads to the approach of

the valuation of claims by utility indifference.

The goal of this thesis is to study the meaning and to get a better understanding of pricing and hedging

a European claim h(YT ) on an asset Yt that is not easily traded or even cannot be traded due to several

impacts such as aggravated market access, high transaction costs or large counter-party positions sizes.

To have an example from practice in mind, one could think about employee stock options: these are

submitted to employees as part of their wages. They then can exercise the option but are not allowed (for

some ex-ante defined time horizon) to trade the received stock. Thus, finding the fair value of such an

option, one can simply assume that the respective underlying is not traded. A second classical example is

the one of a stock basket. Options written on a basket of stocks (e.g. in a form of a structured product)

are treated similarly as the underlying stocks cannot be traded due to its high transaction costs. For

pricing and hedging purposes, one then often takes a highly correlated index or exchange traded fund

(ETF) into account. Lastly, the disability for trading in Yt can also arise from illiquidity, as there is an

agent in the markets who holds an enormously large position.

Our focus of this investigation lies in the so-called basis risk model which assumes that a traded asset

St as well as the nontraded asset Yt follow each a geometric Brownian motion, where the respective

underlying Brownian motions have correlation %. We then assume that an agent holds a position of q
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Chapter 1. Introduction and Motivation

units of an European claim h(YT ) written on Yt and we address the question of pricing and hedging (by

trading in St) this instrument.

As afore-mentioned, we include the agent’s individual risk aversion into the model. In the economic

literature, this is usually done by specifying the investor’s utility function U(x) – a concave and non-

decreasing function representing the measure of preference of a single investor towards wealth and risk,

respectively. By the resulting non-linear attitude towards risk, prices become non-linear in the position

size, meaning that the unit price for say 10 units of an asset is not equal to the price per unit for 20

assets. Moreover, a very wealthy person does not have the same aversion towards risk as a poor one.

Hence, position size as well as (initial) wealth play a crucial role in the later study.

Summarizing, we assume that each investor tries to maximize, by trading in the asset St, her expected

utility at time T > 0, given she has initial wealth x and holds q contracts of the claim h(YT ).

Following these thoughts and translating into mathematical expressions, our goal is henceforth to study

the average utility indifference price p = pU (x, q;h) which is defined through

(1.0.1) uU (x− qp, q;h) = uU (x, q; 0),

where uU (x, q;h) is called the value function and represents the maximal expected utility at time T an

investor may achieve by trading in the traded asset St and holding q contracts of a claim h(YT ).

The left-hand side of (1.0.1) is the maximal expected utility an investor may achieve by trading in St and

holding q contracts of h(YT ) started from initial wealth x − qp and we require that this coincides with

the maximal utility of an investor achieved by just trading in St. Accordingly, Equation (1.0.1) asks for

the price p such that the investor is indifferent between holding q contracts of the derivative written on

the nontraded asset Yt and trading in St or just trading St.

It is therefore crucial to have knowledge about the value function uU (x, q;h) or about the optimizing

strategy and by this implicitly about the average utility indifference price p. But in reality, this is

very hard and in most cases not even feasible explicitly. Therefore, one has to study approximations of

uU (x, q;h) to get a deeper understanding.

This thesis presents two approaches of tackling this problem:

1) We will study uU (x, q;h) by letting the position size q converge to 0. This is the so-called small

claim limit. The case of q = 0 has been extensively studied by Merton in [Mer69] for different

utility functions and reincorporated by various other authors. We will establish our theory based on

[Hen02]. In one of our main results, we are going to see that in the small claim limit, the optimal

strategy of investing into St, given an agent holds q units of h(YT ), is obtained by a decline in the

Delta hedge term of the optimal strategy derived from the complete market framework, which is an

easy consequence of the results obtained by [Mer69]. From this, average utility indifference prices will

be established and numerically compared to the standard Black-Scholes prices. An advantage of this

approach is that the market is kept constant in the limiting process. But of course, we do not expect

that we get proper pricing results for large claims in this setting. Therefore, we also consider the

following approach.

2) Alternatively, based on [Rob13], we will examine the value function in a sequence of filtered probability

spaces (Ωn, (Fnt )0≤t≤T ,Fn,Pn) representing a sequence of markets which will become asymptotically

complete in the limit as we let % converge to 1. This is the so-called large claim limit. It turns out

that it is of high importance that we let the markets also vary. Each market’s structure is assumed to

be of the basis risk type as mentioned above and we assume that an agent holds qn (where qn →∞)

8



contracts of the derivative h(YT ). We then let n converge to infinity and study the limiting behavior

of pn(x, q;h).

This thesis is organized as follows: In Chapter 2, we provide the necessary tools and definitions for

the later study. Moreover, we provide a short overview of a so-called duality approach to the initial

expected utility maximization problem and we also present results to ensure the lack of arbitrage which

will especially play an important role in the large claim limit approach. Then Chapter 3 presents the

small claim limit approach while in Chapter 4, we present the large claim limit approach. Both chapters

are ended up with examples, where we investigate optimal strategies and utility indifference prices in

different market scenarios. These examples include standard options such as European Call and Put

options, but also non-standard such as Power options. In Chapter 5, we compare the two approaches

in detail, also by the use of examples, and give an extensive conclusion. To the end, in Chapter 6 we

provide a short heuristic overview on a generalized semimartingale model and try to see similarities with

the approaches presented here.

9





Chapter 2

Definitions and Setup

In what follows, we provide the main definitions. For the rest of this chapter, we specify our prob-

ability space as follows: We let T > 0 and set [0, T ] to be the finite time horizon. For each n, let

(Ωn, (Fnt )0≤t≤T ,Fn,Pn) denote a filtered probability space where the filtration Fn = (Fnt )0≤t≤T satisfies

the usual conditions of completeness and right-continuity. Additionally, we assume zero interest rates1,

hence the safe asset is given by Pt ≡ 1. Lastly, we assume that the risky and traded asset Snt is an

R-valued continuous semimartingale.

Further, we assume that the investor holds qn units of a nontradable, Fn-measurable contingent claim

hn. Note that qn as well as hn are allowed to vary by the markets.2

We start with one of the central tools in our study.

Definition 2.0.1. A utility function U(x) is an increasing and strictly concave function U ∈ C2(R)

resp. U ∈ C2(R>0).3 We denote the set of utility functions U ∈ C2(R) with an exponential-like decay

for large negative wealths by

Uα :=

{
U utility function : lim

x→∞
U(x) = 0 and lim

x→−∞
− 1

x
log(−U(x)) = α

}
.

A canonical example of U ∈ Uα is given by4

Uα(x) := − 1

α
e−αx.

Moreover, we denote the set of utility functions with a similar exponential-like behavior for large negative

wealths as Uα ∈ Uα by

Ũα :=

{
U ∈ Uα : 0 < lim inf

x→−∞

U(x)

Uα(x)
≤ lim sup

x→−∞

U(x)

Uα(x)
<∞

}
⊂ Uα.

On the first sight, the difference between Uα and Ũα is not easy to spot. But one could think of a

1Clearly, everything could be derived assuming a short rate r 6= 0. For simplicity and readability, we forbear to do so.
2Of course, hn cannot vary in any imaginable way, as we require that hn has to converge in some sense. Hence, we do

not mean that hn varies between e.g. a Put option and a Call option. Rather, we want to emphasize by the superscript n
that the value of our claim is dependent on the varying markets, hence on the varying price process.

3There is no clear consensus in literature and utility functions are sometimes defined on the whole real line or just on
the positive part, depending on the point of interest.

4A non-standard example of U ∈ Uα is the following: Assume that a wealth manager has N clients, each with canonical
exponential utility function Uαi , 1 ≤ i ≤ N . Then, under the assumption of fair management, the manager’s utility function

is given by the weighted average of the different individual utilities, i.e. U =
∑N
i=1 ωiUαi , where ωi denotes the proportion

of managed wealth of client i with respect to the whole fund. It then can be shown that U ∈ Uα for α = maxi αi.

11



Chapter 2. Definitions and Setup

utility function U(x) that satisfies U(x) = − 1
xUα(x) for large negative wealths. It then follows that

U(x) ∈ Uα \ Ũα. Lastly, for p > 1, l > 0 and U ∈ C2(R), we define

Up,l :=

{
U utility function: lim

x→∞
U(x) = 0 and lim

x→−∞
− U(x)

(−x)p
=

1

l

}
,

and we call U ∈ Up,l a utility function with power-like decay for large negative wealths.

A common example of a utility function supporting only positive wealths is the power utility function

UR(x) :=
x1−R

1−R
,

for R > 0 and R 6= 1.

The economical interpretation of utility functions is clear: They are increasing to indicate that agents

prefer higher wealths than lower and the concavity indicates the fact that agents are risk-averse.

Example 2.0.1. We provide some examples and properties of above presented utility functions:

1) Exponential utility function:

Uα(x) := − 1
αe
−αx for α > 0 and for x ∈ R. Clearly Uα(x) ∈ Uα.

A nice feature of this utility function is that it has constant absolute risk aversion
−U ′′α(x)

U ′α(x)
= α.

2) Power law utility function:

UR(x) := x1−R

1−R for R > 0, R 6= 1 and for x ∈ R+.

A nice feature of this utility function is that is has constant relative risk aversion −xU
′′
R(x)

U ′R(x)
= R.

3) Utility function with a power-like decay for large negative wealths:

Up,l(x) := − 1
l x
p −K for x ≤ −M < 0, K > 0, p > 1 and l > 0. Clearly Up,l(x) ∈ Up,l

One should extend this function in such a way that the concavity property is not violated and such

that Up,l(x)→ 0 for x→∞.

Note. Later, we use utility functions for maximizing expected utility. Expected utility is interpreted

ordinally, meaning that the magnitude and sign does not matter but rather the order. Therefore it should

be clear that in this context, expected utility functions are unique up to linear transformations. Relative

and absolute risk aversion are measures that are invariant under these transformations. They represent

the curvature of the utility function5 and are also called Arrow-Pratt risk aversion coefficients. Put

differently, these risk aversion parameters express how much utility an agent gains when she adds (an

absolute or relative) amount of wealth to the current wealth. They are therefore local parameters, in the

sense that they depend on the current wealth.

Figure 2.0.1 shows examples of utility functions with constant absolute and constant relative risk aversion

respectively for different parameters and the behavior of Up,l(x) for x ≤ −2.

Remark 2.0.1. Let us record a fundamental relationship between the absolute risk aversion α and

relative risk aversion R, namely that α = R
x . This will be used in the sequel for comparison. As this

relation is only local, one has to be careful when using it.

Note. For any utility function presented in Example 2.0.1, it can be shown that it satisfies the conditions

known as
5It is an economical way of representing the curvature. In mathematics, especially in geometry, one has another under-

standing of curvature.

12



(a) Uα(x). (b) UR(x). (c) Up,l(x).

Figure 2.0.1: Example of different utility functions.

1. Inada Conditions

lim
x→−∞

U ′(x) =∞ and lim
x→∞

U ′(x) = 0.

2. Conditions of Reasonable Asymptotic Elasticity

lim inf
x→−∞

xU ′(x)

U(x)
> 1 and lim sup

x→∞

xU ′(x)

U(x)
< 1.

The Inada conditions basically ensure that the investor is less risk averse with increasing wealth - and in

the limit, the investor’s risk aversion is 0, which is of course a plausible assumption as with increasing

wealth, investors can bear higher risk. On the other hand, the terms in the Conditions of Reasonable

Asymptotic Elasticity can be understood as the ratio between the marginal utility U ′(x) and the average

utility U(x)
x , meaning that these conditions control in some sense the variation of the risk aversion while

wealth is varied. For example, they require the marginal utility to be substantially smaller than the

average utility when x→∞ [Sch01, p. 698]. These conditions are well-known and widely used.

Definition 2.0.2. For a utility function U denote by V : (0,∞)→ R the convex conjugate to U which

is given by:

V (y) := sup
x∈R
{U(x)− xy}.

Note. By definition, we have for any y > 0

U(x) ≤ V (y) + xy.

By convex analysis, we obtain the following properties to V (see [OŽ09, p.4]):

� V (y) is strictly convex.

� V (y) is continuously differentiable.

� The following relationship between U(x) and V (y) holds true: (U ′(x))−1 = −V ′(y).

� The domain of V (y) resp. V ′(y) can be extended in a natural way to [0,∞] by prescribing V (0) =

U(∞), V (∞) =∞, V ′(0) = −∞, V ′(∞) =∞.

Remark 2.0.2. For the presented utility functions, one easily obtains that

1. Exponential utility function:

Vα(y) = y
α (log(y)− 1).

13
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2. Utility function with a power-like decay for large negative wealths:

Vp(y) = p−1
p

(
l
p

) 1
p−1

y
p
p−1 for Up(x) := 1

l p
p−1xp − p2.

3. Power law utility function:

VR(y) = R
1−Ry

R−1
R .

Note. For U ∈ Uα, we have that

(2.0.1) lim
y→∞

V (y)

Vα(y)
= 1, for Vα(y) as above.

For U ∈ Up,l, we have that

(2.0.2) lim
y→∞

V (y)

Vp(y)
= 1, for Vp(y) as above.

As we are often dealing with (local) martingale measures, let us provide a proper definition:

Definition 2.0.3. We callMn the set of all local martingale measures Qn which are absolutely continuous

with respect to Pn, hence

Mn := {Qn � Pn on Fn : Sn is a local martingale under Qn}.

In the sequel we are often interested in probability measures µ which are in some sense close to a given

probability measure Pn in the sense that the measure change has a very small impact on the model (e.g.

on martingale properties of some processes). For having a tool to measure the degree of dissimilarity,

we introduce the notion of relative entropy, which is a measure of departure from a given measure Pn.

[FS91]6

Definition 2.0.4. For any probability measure µ� Pn on Fn, the relative entropy7 of µ with respect

to Pn is given by

H (µ|Pn) := EPn
[
dµ

dPn
log

(
dµ

dPn

)]
.

We note that the relative entropy is always nonnegative and of course we have that H(µ|Pn) = 0 ⇐⇒
µ = Pn. But clearly, this distance is not a metric, as it does fulfill neither symmetry properties nor a

triangle inequality.

Therefore, roughly speaking, the distance from µ to Pn does not coincide with the distance from Pn to µ.

Remark 2.0.3. Above definition of the relative entropy is only valid under exponential utility. The

more general definition of relative entropy would be

EPn
[
V

(
dµ

dPn

)]
,

for V being the convex conjugate of U . Unless it is not clear from the context, we will remark which

relative entropy we are considering.

Definition 2.0.5. The set of all local martingale measures Qn ∈ Mn having finite relative entropy H

6For the interested reader, we refer to [Ull96] for a detailed explanation on the fact that the relative entropy is a proper
and suitable tool to measure the dissimilarity between two measures.

7Also called Kullback-Leiler distance.
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with respect to Pn is denoted by

M̃n := {Qn ∈Mn : H(Qn|Pn) <∞}.

Hence this is the set of local martingale measures Qn which are, in some sense, closely related to the

physical measure Pn.
In the same way, for more general utilities U , we define the set of local martingale measures having finite

relative entropy by

M̃n
V :=

{
Qn ∈Mn : V

(
dQn

dPn

)
<∞

}
.

Lastly, for the utility with a power-like decay for large negative wealths, we set, for γ = p
p−1 for some

p > 1

M̂n
V :=

{
Qn ∈Mn : EPn

[(
dQn

dPn

)γ]
<∞

}
.

Let’s turn our attention to trading strategies. As we will work only with geometric Brownian motions

in the sequel, we provide here all the definitions based on the fact that we have positive and continuous

price processes.

Definition 2.0.6. A trading strategy (also called portfolio) πnt is any progressively measurable (hence

adapted) stochastic process denoting the number of shares. For a price process Snt , we denote by

V nt := Pt + πnt S
n
t = 1 + πnt S

n
t

the value of the portfolio at time t.

The portfolio is called self-financing if there is no in- or outflow of capital during any time of trading,

i.e. if for all t ∈ [0, T ]

dV nt = πnt dS
n
t .

Hence any change in the value is only due to changes of prices.

A self-financing trading strategy πnt is called admissible if it is predictable, Snt -integrable under Pn and

such that the value process V nt is uniformly bounded from below by a constant. We denote the set of all

admissible trading strategies by

Hn := {πnt trading strategy : πnt is admissible}.

The notion of admissibility is to avoid weird trading strategies (such as doubling strategies, where we

would possibly need an infinite credit). Based on this, we can now define wealth.

Definition 2.0.7. The wealth XT at time T is given by

XT = Xt +

∫ T

t

πnudS
n
u = Xt +

∫ T

t

π̃nu
dSnu
Snu

for a strictly positive semimartingale Snu and πnu a trading strategy denoting the number of stocks (resp.

π̃nu denoting the total amount of cash invested in Snt ). Hence XT is composed from wealth Xt at time t

and the gains resp. losses from trading according to πnu in Snu between time t and T .

Definition 2.0.8. An arbitrage portfolio is a self-financing trading strategy πnt with value process

V (0) = 0 and V (T ) ≥ 0 with Pn[V (T ) > 0] > 0. If there is no arbitrage portfolio, we say that the model

is arbitrage-free.
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Chapter 2. Definitions and Setup

Definition 2.0.9. A claim h due at time T is attainable if there exists an admissible strategy πnt which

replicates h at time T . That is, the value process satisfies VT = h Pn-a.s.

Definition 2.0.10. We say that a market model is complete, if any bounded T -claim is attainable.

At this point, we refer to the two Fundamental Theorems of Asset Pricing, see Theorem A.0.1 and

Theorem A.0.2. These connect the notion of no arbitrage and completeness with equivalent martingale

measures.

We are now finally able to define the value function by which one of our main focus, the average utility

indifference price, is implicitly defined.

Definition 2.0.11. Let U be a utility function. Then for x in the domain of U and q ∈ R, the value

function is given by

(2.0.3) unU (x, q;hn) := sup
πn∈Hn

EPn [U(x+ (πn · Sn)T + qhn)].

As mentioned earlier, the investor’s goal is to maximize over all possible strategies (in this case admissible

strategies) her expected utility at time T , meaning she wants to maximize the expected wealth which can

be decomposed into the initial wealth, the additional (possibly negative) wealth from trading and the

gains/losses from holding q contracts of the claim hn. This is exactly represented in the value function.

Definition 2.0.12. The average utility indifference price pnU (x, q;hn) is implicitly given as a solution

of

(2.0.4) unU (x, q; 0) = unU (x− qpnU (x, q;hn), q;hn).

Hence, pnU (x, q;hn) is the price which an investor with utility function U is prepared to pay per unit of

hn in order to be indifferent between owning and not owning q units of hn.

Note. We will see later in our study that for a canonical exponential utility function Uα ∈ Uα, the

average utility indifference price pnUα(x, q;hn) is independent of the initial capital x. In reality, it is not

always desirable to have this property as one might not assume that investors with different initial wealth

have the same attitude towards risk [Hen02, Section 1].

2.1 From the Primal to the Dual Problem

In this section we discuss a possible approach of solving the optimization problem in (2.0.3) to find

the value function. There are two well-known ways of tackling the problem: the method of dynamic

programming and the duality (or martingale) approach - we will focus on the latter.

To be more rigorous, we record here again the primal problem, that is, each investor tries to maximize

over all admissible trading strategies her expected utility of wealth at time T

(Primal Problem) unPrimal = sup
πn∈Hn

EPn [U(x+ (πn · Sn)T + qhn)].

Let us state the dual problem to above primal problem, that is

(Dual Problem) unDual = inf
µn∈Cone(M̃n

V )
EPn

[
V

(
dµn

dPn

)
+
dµn

dPn
(x+ qhn)

]
,
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2.1. From the Primal to the Dual Problem

where Cone(M̃n) := {yQn : y ≥ 0,Qn ∈ M̃n
V }.

Using U(x) ≤ V (y) + xy for any y > 0, it follows that for any equivalent martingale measure Qn ≈ Pn

unPrimal ≤ EPn
[
V

(
y
dQn

dPn

)]
+ EQn [y (x+ (πn · Sn)T + qhn)](2.1.1)

≤ EPn
[
V

(
y
dQn

dPn

)]
+ y(x+ qEQn [hn]) ≤ unDual.

But first of all, we notice that the second inequality in (2.1.1) comes from the fact that (πn · Sn)T

is a local martingale under the equivalent martingale measure Qn bounded from below, hence a Qn-

supermartingale by Fatou’s lemma. As not any supermartingale is bounded from below, we expect that

the optimal strategy in the primal problem lies rather in the set Hnperm of permissible trading strategies,

that is in the set

Hnperm := {πn trading strategy : (πn · Sn)T is a Qn-supermartingale for all Qn in M̃n
V }.

We denote the value function given by maximizing over all permissible trading strategies by

(Primal Problem’) unPrimal, perm := sup
πn∈Hnperm

EPn [U(x+ (πn · Sn)T + qhn)].

We easily get that unPrimal ≤ unPrimal,perm as Hn ⊂ Hnperm due to the fact that every local martingale which

is uniformly bounded from below is a supermartingale.

We note that we can rewrite (Dual Problem) as

unDual = inf
y≥0

inf
Qn∈M̃n

V

{
EPn

[
V

(
y
dQn

dPn

)]
+ y(x+ qEQn [hn])

}
.

We observe how the (generalized) relative entropy comes into play - it plays a crucial role in the study

of the dual problem.

Henceforth, our goal is to find a solution to (Dual Problem) that has minimal/no duality gap, which is

the difference in the inequality unPrimal ≤ unDual.

For this purpose we present in a first step a result which guarantees under certain assumptions, that we

do not have to enlarge the set over which the investor maximizes her expected utility, meaning that we

have unPrimal = unPrimal,perm and in a second step that we then even get a duality gap of zero.

Proposition 2.1.1. ([OŽ09, Theorem 1.9])

1) Assume that the utility function U satisfies the Conditions of Reasonable Asymptotic Elasticity and

that ∃ x′, x′′ ∈ R and πn ∈ Hn such that for the claim hn

(2.1.2) x′ ≤ hn ≤ x′′ + (πn · Sn)T .

Then

M̃n
V 6= ∅ ⇐⇒ unPrimal < U(∞).

In that case, we have

unPrimal = unPrimal, perm, hence (Primal Problem) ≡ (Primal Problem’).
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Chapter 2. Definitions and Setup

2) Assume that the utility function U satisfies the Conditions of Reasonable Asymptotic Elasticity, that

M̃n
V 6= ∅ and that ∃ x′, x′′ ∈ R and (πn)′ ∈ Hnmg := {πn ∈ Hnperm : (πn·Sn) is a Qn-martingale ∀ Qn ∈

M̃n
V } and (πn)′′ ∈ Hnperm such that

(2.1.3) x′ + ((πn)′ · Sn)T ≤ hn ≤ x′′ + ((πn)′′ · Sn)T .

Then for M̃n
equiv := {Qn ≈ Pn on Fn : Sn is a local martingale under Qn and H(Qn|Pn) < ∞} we

have

M̃n
equiv 6= ∅ ⇐⇒ ∃ optimal πn? ∈ Hnperm in (Primal Problem’).

Proof. The complete proof can be found in [OŽ09, Theorem 1.9]. The core idea lies in applying the

Lagrange Duality Theorem.

Note.

� The requirements to hn in (2.1.2) resp. (2.1.3) are not very restrictive in our study as they are

satisfied for example by every bounded claim. They can be understood as an assumption to hn

being sub- and superreplicable.

� Proposition 2.1.1 can be understood as a version of the Fundamental Theorem of Asset Pricing

as it relates the existence of a local martingale measure to the notion of a certain no-arbitrage

condition given in terms of finiteness of the maximal utility. This no-arbitrage is sometimes called

no nirvana. We refer to Section 2.2.1 for more details.

Next, we want to give conditions that guarantee that (Dual Problem) and (Primal Problem) are equiva-

lent, meaning unPrimal = unDual by this zero duality gap.

Proposition 2.1.2. ([OŽ09, Theorem 1.8]) Suppose that the utility function U satisfies the Conditions of

Reasonable Asymptotic Elasticity and that the claim hn satisfies (2.1.2) or the weaker (2.1.3). Moreover,

assume that M̃n
V 6= ∅. Then

1) unPrimal = unDual < U(∞), hence (Primal Problem) = (Dual Problem).

2) There exists a µ̂n ∈ Cone(M̃n
V ) \ {0} which is optimal in (Dual Problem).

If in addition, M̃n
equiv 6= ∅, then

3) µ̂n ∈ Cone(M̃n
equiv) \ {0} and there exists (πn)? ∈ Hnperm which is optimal in (Primal Problem).

Proof. The full proof can be found in [OŽ09, Theorem 1.8].

Conclusion:

As long as U satisfies the Conditions of Reasonable Asymptotic Elasticity and hn is assumed to be

both super- and subreplicable, then (Primal Problem) is equivalent to (Dual Problem) as soon as

there exists at least one equivalent local martingale measure Qn having finite (generalized) relative

entropy with respect to Pn, i.e. as soon as M̃n
V 6= ∅.

We are now able to properly formulate our model.
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2.2. Model Formulation

2.2 Model Formulation

We address the question of pricing and hedging European claims hn(YT ) written on some nontraded

asset Yt. The fact of disability of trading in Yt can originate in different reasons - we have given some in

the introduction. Especially for hedging purposes, what practitioners do is to take a closely related and

traded asset Snt into account for trying to hedge their exposure optimally. This will now be translated

into a mathematical model.

We consider a stochastic basis (Ωn, (Fnt )0≤t≤T ,Fn,Pn) which supports two correlated Brownian motions

Bt, Zt. For each n ∈ N, we consider the assets Snt , Yt given by the following stochastic differential equations

(2.2.1)
dSnt
Snt

= µ(Yt)dt+ σ(Yt)dBt, Sn0 dYt = ν(Yt)dt+ η(Yt)dZt, Y0.

It is convenient to express Zt as a linear combination of two independent Brownian motions Bt,Wt,

namely

Zt = %nBt +
√

1− %2
nWt,

for %n ∈ [−1, 1].

There are several ways to interpret Yt. For example, Yt can be seen as describing a certain factor of

the asset Snt (e.g. micro-/macroeconomic factor such as taxes, inflation, etc.). The model is thus called

stochastic factor model. As a special case, we can interpret Yt as a nontraded asset but on which

claims may be written. We are then exactly in the framework of a nontraded asset Yt and a traded

reference asset Snt as addressed in the introduction. For simplicity, we then assume that St as well as

Yt are given by a geometric Brownian motions (i.e. ν(Yt) = νYt, η(Yt) = ηYt., µ(Yt) = µ, σ(Yt) = σ).

Hence, all our price processes are continuous.

When trading in Snt for (proxy) hedging a position in hn(YT ), the crucial and very obvious fact is, that,

as long as %n 6= ±1, there is still some unhedgeable basis risk left. This gives the name basis risk model.

In Chapter 3 we discuss the basis risk model in more detail, while Chapter 4 gives a detailed insight in

the general stochastic factor model.

We then study the average utility indifference price pnu(x, qn;hn) given by the utility indifference criterion

unU (x, qn; 0) = unU (x− qnpnU (x, qn;hn), qn;hn).

As this equation cannot be solved explicitly, we are interested in its limit approximations as qn → 0

(small claim limit, Chapter 3) resp. qn →∞ (large claim limit, Chapter 4).

For this, we apply the duality approach as introduced in the preceding section.

Switching the initial primal problem of finding the optimizing strategy πn? ∈ Hn in

unPrimal = sup
πn∈Hn

EPn [U(x+ (πn · Sn)T + qhn)]

to the dual problem

unDual = inf
y≥0

inf
Qn∈M̃n

{
EPn

[
V

(
y
dQn

dPn

)]
+ y(x+ qEQn [hn(YT )])

}
leads us to an optimization over a set of (probability) measures.

It will turn out later in our study that it is a good idea for finding the optimizing probability measure in
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(Dual Problem) to consider the so-called minimal martingale measure Qmin introduced by [FS91] - a

measure that became fairly popular recently when dealing with continuous price processes. We present

here an intuitive construction based on [Sch99b] and [FS10]

Consider a continuous adapted process Xt with Doob-Meyer decomposition ([Pro04, Section III, Theorem

6])

Xt = X0 +Mt +At,

where Mt is a (square integrable) local P-martingale and At a predictable process of bounded variation

of the form

At =

∫ t

0

λsd〈M〉s,

such that for all t ∈ [0, T ], the mean-variance trade-off process satisfies the following integrability

condition

Λ :=
1

2

∫ t

0

λ2
sd〈M〉s <∞.

Then Qmin defined through

dQmin

dPn
:= E

(
−
∫
λdM

)
T

is the unique equivalent local martingale measure for Xt with the property that all square-integrable Pn-

martingales M ′t strongly Pn-orthogonal to Mt (i.e. MtM
′
t is a P-martingale) are also Qmin-martingales.

Roughly speaking, Qmin is the equivalent (local) martingale measure that preserves the martingale struc-

ture as far as possible under the constraint of turning Mt into a martingale.

The name of Qmin has its origin as it minimizes the reverse relative entropy H(Pn|·) over all equivalent

local martingale measures Q for X (this holds only under the assumption of continuous paths of Xt).

[Sch99b]. Note that as we mentioned in Definition 2.0.4, the (generalized) relative entropy does not fulfill

a symmetry property.

In contrast to that, the minimal entropy martingale measure is the measure Qn that minimizes

H(·|Pn) over all equivalent local martingale measures Qn ∼ Pn. [Sch10]

By [Sch10, p.3], we even get that the minimal entropy martingale measure coincides with the minimal

martingale measure if the price process St is continuous and the mean-variance process has constant

expectation over all equivalent local martingale measures for St.

In the classical basis risk model

dSnt
Snt

= µdt+ σdBt, S0
dYt
Yt

= νdt+ η
(
%ndBt +

√
1− %2

ndWt

)
, Y0,

the minimal martingale measure Qmin is easily obtained and given by

dQmin

dPn
= E

(
−µ
σ
·B
)
T
.

In this setting, Qmin coincides with the natural suggestion of an equivalent martingale measure provided

by Girsanov’s Theorem. Moreover, under Qmin, it follows by Girsanov’s Theorem that Bmin
t := Bt + µ

σ t

as well as Wmin
t := Wt are Brownian motions.
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2.2. Model Formulation

Lastly, the relative entropy of Qmin with respect to Pn in the case of exponential utility is given by

H(Qmin|Pn) = EPn
[
dQmin

dPn
log

(
dQmin

dPn

)]
= EPn

[
exp

(
−µ
σ
Bt +

µ2

2σ2
T

)(
−µ
σ
Bt +

µ2

2σ2
T

)]
<∞.

Hence M̃n 6= ∅ and (Primal Problem) = (Dual Problem).

Having defined or model, we want to guarantee that no arbitrage can occur in a fixed market as well as

in the limiting process.

2.2.1 Exclusion of Arbitrage Opportunities

We know exactly the conditions to avoid risk-less profit (see Theorem A.0.1) - the existence of at least

one local martingale measure. But in an incomplete market framework we do not have anymore a unique

pricing measure Qn but rather a set of possible pricing measures. However, we consider the set of viable

prices {EQn [hn(YT )] : Qn is an equivalent martingale measure for Sn}. Viable prices do not include

arbitrage opportunities due to the Fundamental Theorem of Asset Pricing, but they give no insight and

information about optimal hedging strategies.

The next proposition gives us for the interval of possible prices (sub-/super-)replicating trading strategies

for the claim hn. In literature, this result is therefore also known as superreplication theorem.

Proposition 2.2.1. (following [Kal09, Theorem 2] and [DS06, Theorem 2.4.1]) Let h = h(YT ) denote

the payoff of an (European) claim on a nontraded asset Yt. Moreover, let Snt be the reference traded asset.

Then

phigh := min{p ∈ R : There exists some self-financing strategy π with initial value

V0(π) = p and terminal value VT (π) ≥ h}

= sup{EQn [h(YT )] : Qn is an equivalent martingale measure for Snt }

and

plow := max{p ∈ R : There exists some self-financing strategy π with initial value

V0(π) = p and terminal value VT (π) ≤ h}

= inf{EQn [h(YT )] : Qn is an equivalent martingale measure for Snt }.

Then the interval of arbitrage-free prices is given by

I(h) = [plow, phigh].

We call plow subreplication price and phigh superreplication price. The intuition behind the

arbitrage-free prices is that if someone offers an investor a price p > phigh, then she can follow a self-

financing strategy with terminal value VT (π) ≥ h, hence the investor has no risk of losing any money.

Of course, any viable price lies in this interval.
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In our notation, the interval of arbitrage-free prices reduces to

I(h) =

[
inf

Qn∈Mn
EQn [h(YT )], sup

Qn∈Mn

EQn [h(YT )]

]
.

For the large claim approach we also want to guarantee that, as the markets become asymptotically

complete, there will be no ’infinite utility’. This is sometimes also called ’no nirvana’.

Lemma 2.2.1. ([Rob13, Proposition 6.1]) Let α > 0, p > 1, l > 0 and x ∈ R. Then under the assumption

that M̃n 6= ∅ for each n and lim supn→∞ infQn∈M̃n H(Qn|Pn) <∞ it follows that for U ∈ Uα

lim sup
n→∞

unU (x, q; 0) < U(∞) = 0.

Assuming that we have M̂n
V 6= ∅ for all n and that lim supn→∞ infQn∈M̂n

V
EPn [(dQ

n

dPn )γ ] < ∞, it follows

for U ∈ Up,l
lim sup
n→∞

unU (x, q; 0) < U(∞) = 0.

Remark 2.2.1. This result ensures no nirvana in the limiting process. If we had lim supn→∞ unU (x, q; 0) >

U(∞), then there would exist a subsequence {nk}k such that unkU (x, q; 0) ≥ U(∞) for k large enough. By

starting with initial wealth x, an investor could then follow this strategy, increase her expected utility and

end up with a higher expected utility than the one corresponding to infinite wealth. Such cases should

be of course excluded.

Proof. We consider the first statement:

By assumption, we have that there exists a sequence of measures Qn1 ∈ M̃n such that

(2.2.2) sup
n∈N

EPn
[
Vα

(
dQn1
dPn

)]
≤ C.

This implies that Zn1 :=
dQn1
dPn is uniformly integrable with respect to Pn,

i.e. limλ→∞ supn EPn [Zn1 1Zn1 ≥λ] = 0. For x ∈ R, it then follows that

unU (x, q; 0) ≤ inf
y>0

(
EPn [V (yZn1 ) + xy]

)
.

Now we use a fact that we will later prove in Lemma 4.1.2: For a random variable Y with EPn [Y ] = 1 such

that EPn [V (Y )] < ∞, we have that the map y 7→ EPn [V (yY )] is differentiable with surjective derivative

EPn [Y V ′(yY )]. In this setting, we set Y = Zn1 and get the existence of a unique yn > 0 which solves

above minimization problem as the map y 7→ EPn [V (yZn1 )] is differentiable and V convex.

By this we get the first order condition x
!
= −EPn [Zn1 V

′(ynZ
n
1 )].

Assume for the moment being that

(2.2.3) lim inf
n→∞

yn > 0.

Then

unU (x, q; 0) ≤ EPn [V (ynZ
n
1 )] + xyn = −EPn [(ynZ

n
1 V
′(ynZ

n
1 )− V (ynZ

n
1 )].

Define f(z) := zV ′(z) − V (z). We observe that f ′(z) = zV ′′(z) > 0 for y > 0 and that limz→0 f(z) = 0

as U(∞) = 0. Moreover, f is increasing and non-negative. Take δ > 0 such that, in view of (2.2.3), we
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have that yn ≥ δ for n large enough. This gives

unU (x, q; 0) ≤ −EPn [f(ynZ
n
1 )] ≤ −EPn [f(δZn1 )] ≤ 0.

In order to end up with a with a contradiction, assume for the moment being the existence of a sequence

such that limn→∞ unU (x, q; 0) = 0. We then get that limn→∞ EPn [f(δZn1 )] = 0 and hence for all ε > 0

(2.2.4) lim
n→∞

Pn[Zn1 ≥ ε] = 0.

Now fix ε > 0 and choose λ large enough that supn EPn [Zn1 1Zn1 ≥λ] ≤ ε. Since Zn1 ∈ M̃n, we get

1 = EPn [Zn1 ] = EPn [Zn1 (1Zn1 ≤ε + 1ε<Zn1 <λ + 1Zn1 ≥λ)] ≤ ε+ λPn[Zn1 > ε] + ε.

If we pass to the limit and let n → ∞ and then ε → 0, we get a contradiction, hence (2.2.4) can not be

true and thus limn→∞ unU (x, q; 0) < 0.

To complete the proof, we are left with checking the assumption in (2.2.3): Again ending up with a

contradiction, assume for the moment being that there exists a sequence yn such that limn→∞ yn = 0.

Let (Mn)n be another sequence with limn→∞Mn = ∞ and limn→∞ ynMn = 0. Choose n large enough

such that yn < 1 which yields by the convexity of V

(2.2.5) − x ≤ V ′(ynMn)EPn [Zn1 1Zn1 ≤Mn
] + EPn [Zn1 V

′(Zn1 )1Zn1 >Mn
].

We have that limn→∞ V ′(ynMn)EPn [Zn1 1Zn1 ≤Mn
] = EPn [Zn1 ] limn→∞ V ′(ynMn) = −∞.

From [OŽ09, Assumption 1.2] and [Sch01, Proposition 4.1, Corollary 4.2], we have the existence of a

constant C such that z|V ′(z)| ≤ CV (z) for z > 0. Moreover, as Mn →∞, we get that for any ε > 0, by

the property in (2.0.1):

(2.2.6) V (z)1z≥Mn
≤ (1 + ε)

(
Vα(z) +

1

α

)
.

By (2.2.2), we therefore obtain for some large K, that

lim sup
n→∞

EPn [Zn1 V ′(Zn1 yn)1Zn1 >Mn

]
≤ K

holds true, which contradicts (2.2.5).

For the second statement, we can proceed in the very same way.

Conclusion:

By the first Fundamental Theorem of Asset Pricing, we get a family of viable prices for a con-

tingent claim h. Then, by the superreplication theorem, we get (at least the existence) self-

financing trading strategies that sub- resp. superreplicate the claim. Lastly, the condition of no

nirvana, i.e. no asymptotic arbitrage opportunities, when we let the markets vary, is given by

lim supn→∞ unU (x, q; 0) < U(∞).
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Chapter 3

Small Claim Limit Approach

In this chapter, we present the small claim limit approach for deriving an approximation of uU (x, q;h)

near q = 0. Our main reference for this approach is [Hen02]: ’Valuation of Claims on nontraded assets

using Utility Maximization’, Mathematical Finance, Vol. 12, No. 4 (October 2002), p: 351 - 373.

Starting with the classical Black-Scholes-Merton model, where we have a traded and risky asset St and

a safe bank account Pt and the corresponding Black-Scholes-Merton wealth problem with one asset, we

include a second, nontraded asset Yt, which is, in some sense, correlated to the traded asset St and on

which a claim h is written. This leads us to the basis risk model.

An investor is then assumed to hold q units of the European claim h(YT ), where T is the endpoint of

our finite time horizon [0, T ]. Under market incompleteness, we analyze the value function uU (x, q;h) for

both the exponential and power law utility function in a neighborhood of q = 0. By this, we will show

in our main result that a first order approximation of the optimal strategy in the small claim limit is

obtained by a decline in the Delta hedge term of the optimal strategy derived from the complete market

framework (where the assets Sn and Y are perfectly correlated, i.e. % = 1). Having this established, we

then find the value function and by this average utility indifference prices.

A nice feature of this approach is that it provides us directly with hedging strategies.

3.1 The Classical Black-Scholes-Merton Model

We work on a filtered probability space (Ω, (Ft)0≤t≤T ,F,P) for some finite time horizon T > 0. We

consider the well-known Black-Scholes-Merton model without transaction costs where we are given

a risky asset St following a geometric Brownian motion with volatility σ and drift µ and a safe bank

account Pt satisfying

(3.1.1)
dSt
St

= µdt+ σdBt, S0 dPt = rPtdt, P0 = 1,

where µ ∈ R, σ ∈ R+ and Bt is a standard P-Brownian motion and r ≥ 0 is the risk-free rate. We still

assume that r = 0. By the specification of the dynamics, the distribution of log(St) is assumed to be

Gaussian under the physical measure P as St is given by

St = S0 exp

((
µ− 1

2
σ2

)
t+ σBt

)
.

The challenge for the investor is now to find an optimal strategy π̃ of investing into the risky asset St
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Figure 3.1.1: Trajectory of a geometric Brownian motion.

and the bank account Pt ≡ 1, given she has an initial wealth of x > 0. Here, ’optimal’ is meant in the

sense of maximizing her expected utility at time T , i.e. finding the strategy π̃ ∈ H that maximizes

EP

[
U

(
x+

∫ T

0

π̃t
dSt
St

)]
,

given St follows a geometric Brownian motion as described above.

Merton showed in his paper [Mer69, Section IV] that for a power law utility function UR = x1−R

1−R (and

without any contingent claim), the optimal proportion of wealth invested in the risky asset (which we

denote by H̃t = π̃t
Xt

) at time t ≤ T is given by

H̃?
t =

µ

σ2R
.

Hence the optimal strategy in this setting consists of an over time constant fraction of the current wealth

invested into the risky asset St. This is a consequence of the constant relative risk aversion of the power

utility. It is of high importance to point out that this fraction is independent of Xt, the current wealth.

The corresponding value function is given by

uUR(x, q; 0) = sup
π̃∈H

EP [UR(XT )] =
x1−R

1−R
EP

[
exp

(
µ2

σ2R
T − µ2

2σ2R2
T +

µ

σR
BT

)1−R]

=
x1−R

1−R
exp

(
1

2

µ2

σ2

1−R
R

T

)
.

For an exponential utility function Uα(x) = − 1
αe
−αx, [Mer69, Section IX] shows that the optimal pro-

portion H̃?
t of wealth invested in the risky asset is no longer independent of Xt and we have

π̃?t =
µ

σ2α
.

Also here, this is a consequence of the constant absolute risk aversion property of the exponential utility
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3.2. The Classical Black-Scholes-Merton Model with an Additional Nontraded Asset

function. Hence the optimal strategy of investing into St consists of a constant over time risky position

(and not anymore a constant proportion as it was the case under power utility). We then obtain the

value function which is given by

uUα(x, q; 0) = − 1

α
EP

[
exp

(
−α

(
x+

∫ T

0

π̃?t
dSt
St

))]

= − 1

α
exp(−αx) exp

(
−1

2

µ2

σ2
T

)
.

We remark that in both cases, the optimal strategy of investing into St is given by the mean-variance

ratio rescaled by the absolute risk aversion.

3.2 The Classical Black-Scholes-Merton Model with an Addi-

tional Nontraded Asset

We now consider the classical Black-Scholes-Merton model introduced in Section 3.1, where we addition-

ally include a nontraded asset Yt following a (correlated) geometric Brownian motion. This leads us to

the basis risk model:

(3.2.1)
dSt
St

= µdt+ σdBt, S0
dYt
Yt

= νdt+ ηdZt, Y0,

where µ, ν ∈ R and σ, η ∈ R+ denote the drift resp. volatility of the associated geometric Brownian

motion. Moreover, Bt, Zt are two Brownian motions with correlation % ∈ [−1, 1] and we set

(3.2.2) Zt = %Bt +
√

1− %2Wt

for two independent P-Brownian motions Bt,Wt. This gives that d〈B,Z〉t = %dt.

The goal of the investor still is to maximize her expected utility at time T by trading in St and, ad-

ditionally, holding q contracts of h(YT ), meaning that she wants to maximize in the sense of the afore

presented primal problem, that is, finding the maximizing strategy π̃? ∈ H in

(3.2.3) uU (x, q;h) = sup
π̃∈H

EP

[
U

(
x+

∫ T

0

π̃t
dSt
St

+ qh(YT )

)]
.

To avoid computational issues, it turns out that the following assumption will play a crucial role in our

study:

Assumption 1. We assume that for q and h one of the following assertions hold true:

1. 0 ≤ h ≤ B for some constant B > 0 and q ∈ R.

Example: long/short position in a Put option.

2. h ≥ 0 but not bounded from above and q ∈ R+.

Example: long position in a Call option.

The attentive reader notices that there is one type of the four standard option types, namely the position

of a ’short Call’, which does not fulfill above conditions to q and h and hence will be excluded in what

follows. The reason for this exclusion is that the value function becomes identical to minus infinity for

27



Chapter 3. Small Claim Limit Approach

power law and exponential utilities. Indeed, we have that Yt is the product of a term measurable with

respect to the filtration generated by Bt and a random (and independent to Bt) part eη
√

1−%2Wt , from

which the unhedgeable risk and the market incompleteness arises. Clearly, this interrupting term is

unbounded from above.

Hence, assuming |%| < 1, this term has an impact on the behavior of the value function uU (x, q;h):

Moreover, we have for the short Call option h(YT ) = −(YT −K)+ that with positive probability

XT + qh(YT ) < 0,

and hence wealth may become negative.

As the power utility function UR(x) = −∞8 for x ∈ R−, we have that

uUR(Xt, q;h) = −∞ for 0 ≤ t ≤ T.

A similar problem arises if we consider exponential utility, as

EP[Uα(−(ST −K)+)] = − 1

α
EP[exp(α(ST −K))1ST≥K ] = +∞,

as EP
[
ee
N
]

= +∞ for a normal random variable N and by noticing that EP [exp(α(ST −K))1ST<K ] ≤ 1.

Hence, we are not able to price short Call options9 in this model. This is clearly a shortcoming of this

approach.

Turning our attention to the dual problem

uDual = inf
y≥0

inf
Q∈M̃

EP
[
V

(
y
dQ
dP

)
+ y

dQ
dP

+ qh

]
,

we consider the minimal martingale measure

dQmin

dP
= E

(
−µ
σ
·B
)
T
.

Under this measure, St is clearly a martingale as

dSt
St

= σdBmin
t ,

where Bmin
t = Bt + µ

σ t is a Qmin-Brownian motion. Moreover, Wmin
t = Wt is also a Qmin-Brownian

motion. Hence we have for Yt that

dYt
Yt

= νdt+ η%dBt + η
√

1− %2dWt

=
(
ν − η%µ

σ

)
dt+

η%

σ
(σdBt + µdt) + η

√
1− %2dWt,(3.2.4)

where the last two terms are Qmin-martingales and δ := ν − µ%η
σ is its drift under Qmin. If the market

is complete, then there exists a unique equivalent martingale measure and the minimization reduces to

8To be exact, we defined the power utility function UR(x) for x ∈ R+
0 . Here, we think of it as an extension to R by

setting UR(x) = −∞ for x ∈ R−.
9Clearly, in this setting of utility maximization, it is not sufficient to just compute the prices of a long position in some

option and then change the sign to get the prices of the respective short position due to the concavity of the investor’s
individual utility and hence risk aversion.
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a minimization over y ≥ 0. Otherwise, under any market incompleteness, above minimization is not that

easy and straightforward anymore.

3.2.1 Complete Basis Risk Model

If % = 1, then the two Brownian motions Bt and Zt are perfectly correlated, meaning that Bt
law
= Zt,

hence all the risk and uncertainty arises from the same source, say Bt.

In this setting, we are able to price and hedge in the known ways, as there is one unique martingale

measure and hence by the two Fundamental Theorems of Asset Pricing (see Theorem A.0.1 and Theorem

A.0.2) the market model is arbitrage-free and even complete. Indeed, we have under the physical measure

P
dYt
Yt

= νdt+ ηdBt =
η

σ

dSt
St

+
(
ν − µη

σ

)
dt.

Clearly, St, the traded risky asset, has to be a martingale under the equivalent martingale measure, which

we denote by Q̄. We get by Girsanov’s Theorem that

dQ̄
dP

= E
(
−µ
σ
·B
)
T
.

But of course, as we only have one source of risk, we must have

(3.2.5) ν =
µη

σ

to ensure the lack of arbitrage opportunities. Thus Q̄ has Radon-Nikodym derivative of the form

(3.2.6)
dQ̄
dP

= E
(
−ν
η
·B
)
T

= E
(
−µ
σ
·B
)
T

(
=
dQmin

dP

)
.

Turning our attention to the maximization problem in (3.2.3). We consider a new wealth variable

X̄t := Xt + qC̄t, for C̄t := EQ̄ [h(YT )|Ft] and 0 ≤ t ≤ T

representing the wealth of an investor at time t when holding q contracts of C̄t and trading in St. Our

goal is now to find the optimal strategy of investing into St, given an agent holds q units of h(YT ). Due to

the fact that the uncertainty of St and Yt have the same source, our conjecture for the optimal strategy

is that it is optimal to hedge away all the risk arising from h(YT ) by a Delta hedge in St. Motivated by

this, we introduce the following notation:

(3.2.7) C̄Yt :=
∂

∂Y
EQ̄ [h(YT )|Ft] , C̄Y Yt :=

∂

∂Y
C̄Yt .

By the famous option pricing PDE derived by Black-Scholes-Merton, we get that C̄t satisfies

∂

∂t
C̄t + C̄Yt Ytr +

1

2
C̄Y Yt Y 2

t η
2 − rC̄t = 0,

which reduces to, as we assume r = 0,

∂

∂t
C̄t +

1

2
C̄Y Yt Y 2

t η
2 = 0.(3.2.8)
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It follows, using the relationship in (3.2.5), Itô’s formula, the fact that Bt
law
= Zt and above reduced PDE,

that

dX̄t = dXt + qdC̄t = π̃t(µdt+ σBt) + qC̄Yt dYt

= π̃t(µdt+ σdBt) + qC̄Yt (Ytνdt+ YtηdZt)

=

(
π̃t +

qC̄Yt Ytη

σ

)
σdBt +

(
π̃t +

qC̄Yt Ytη

σ

)
µdt

= Π̃t (σdBt + µdt)

for Π̃t :=
(
π̃t +

qC̄Yt Ytη
σ

)
.10 This means, we can interpret this model as a classical Merton wealth problem

as introduced in Section 3.1 with a modified strategy Π̃t instead of π̃t and get directly the optimal strategy,

value function and average utility indifference price - we do not have to switch to the dual problem and

minimize there over y ≥ 0 and hoping to find a solution with zero duality gap.

Nevertheless, we will present the dual approach in the case of power law utility.

3.2.1.1 Complete Basis Risk Model under Power Law Utility

From Section 3.1 we have that the optimal amount Π̃?
t of cash invested in the risky assets (here: St and

qC̄t) for the power law utility UR(x) = x1−R

1−R is given by

Π̃?
t =

µ

σ2R
X̄t =

µ

σ2R

(
Xt + qC̄t

)
,

meaning that the optimal quantity π̃?t of cash invested in St is given by 11

π̃?t (Xt, q;h) = Π̃?
t −

qC̄Yt Ytη

σ
=

µ

σ2R
(Xt + qC̄t)−

qC̄Yt Ytη

σ
.

This leads to the value function

uUR(Xt, q;h) = EP[U(X̄T )] =
X1−R
t

1−R
exp

(
1

2

µ2

σ2

1−R
R

(T − t)
)(

1 +
qC̄t
Xt

)1−R

,(3.2.9)

based on the results seen in Section 3.1.

The interpretation of this result is as follows: The optimal quantity π̃?t of cash invested in the risky and

traded assets St resp. C̄t is given by a constant fraction of current wealth µ
σ2RX̄t plus (resp. minus) an

additional Delta hedging term, where X̄t = Xt + qC̄t is the agent’s wealth at time t. In other words, the

agent hedges all the risk away by a Delta hedge and then puts a constant fraction of her wealth into the

risky asset. Based on the claim h(YT ), the Delta hedge can in- resp. decrease the overall money put into

St.

We now want to verify these results using the dual approach:

10At this point, we have to pay attention that the admissibility property is not violated. As our results in this section
are of general nature (without Assumption 2), we consider the four standard options types. For Put options (which have
bounded payoff profile), admissibility is guaranteed. For long a Call option, admissibility is also ensured as C̄Yt ≥ 0. For

short a Call option and other exotic claims, we must use a stopping argument that guarantees that Π̃t remains uniformly
bounded from below.

11When applying the modified strategy Π̃t to the power utility case, we have to ensure that wealth remains positive. As
in above footnote, we must use a stopping argument in the case where q < 0 or C̄Yt ≤ 0.
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Our initial goal was to find the optimal strategy in the primal problem with claim qh(YT )

uUR(x, q;h) = sup
π̃∈H

EP

[
UR

(
x+

∫ T

0

π̃t
dSt
St

+ qh(YT )

)]
.

Turning our attention to the dual problem, we have seen that the convex conjugate is given by VR(y) =
R

1−Ry
R−1
R . Hence it is easily seen that

EP
[
VR

(
y
dQ̄
dP

)]
=

R

1−R
y
R−1
R exp

(
1

2

µ2

σ2R

1−R
R

T

)
.

Therefore the following has to be minimized over y ≥ 0

R

1−R
y
R−1
R exp

(
1

2

µ2

σ2R

1−R
R

T

)
+ y(x+ qEQ̄[h(YT )]),

which then gives that

uUR(x, q;h) ≤ 1

1−R
exp

(
1

2

µ2

σ2R
(1−R)T

)
(x+ qEQ̄[h(YT )])1−R.(3.2.10)

Hence, as seen in (2.1.1), the dual approach provides us with an upper bound to the value function.

However this inequality is in fact an equality as one easily can show that Q̄ is a martingale measure

having finite (generalized) relative entropy with respect to P, hence we have satisfied the criterion of

equivalence between (Primal Problem) and (Dual Problem) is satisfied.

An alternative and more rigorous argument is that the right-hand side of (3.2.10) can be seen as

uUR(x, q; 0)
(

1 +
q

x
EQ̄[h(YT )]

)1−R
.

Using the fact that

uUR(x, q;h) ≥ uUR(x, q; 0),

gives us the desired equality.

3.2.1.2 Complete Basis Risk Model under Exponential Utility

Similar results can be obtained for the exponential utility function Uα(x) = − 1
αe
−αx. The optimal

quantity π̃?t of cash invested in St is given by

π?t (Xt, q;h) =
µ

σ2α
− ηq

σ
C̄Yt Yt.

The value function is given by, using again the results from Section 3.1

uUα(Xt, q;h) = − 1

α
exp

(
−α(Xt + qC̄t)

)
exp

(
−1

2

µ2

σ2
(T − t)

)
.

The interpretation stays the same: The additional term is due to the fact that the agents hedges all the

risk away arising from price movements in the underlying.

Also in this case, the dual approach would directly give us the desired solution with zero duality gap as

Qmin ∈ M̃n.
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3.2.1.3 Average Utility Indifference Price in Complete Basis Risk Model

By the classical utility indifference criterion

uU (x, q; 0) = uU (x− qpU (x, q;h), q;h),

we get the average utility indifference price pU (x, q;h) in an explicit form:

x1−R

1−R
exp

(
1−R
R

µ2

2σ2
(T − t)

)
!
=

(x− qpU )1−R

1−R
exp

(
1−R
R

µ2

2σ2
(T − t)

)(
1 +

qC̄t
x− qpU

)1−R

,

which clearly reduces to

pUR(x, q;h) = C̄t = EQ̄ [h(YT )|Ft] .

Similar calculations show also for the exponential utility that

pUα(x, q;h) = EQ̄ [h(YT )|Ft] .

In this case, average utility indifference prices coincide with the Black-Scholes prices.

Moreover, in the case of exponential utility, we can even represent the price as follows

pUα(x, q;h) =
1

αq
log

(
uUα(0, q; 0)

uUα(0, q;h)

)
.(3.2.11)

In fact, this is exactly what we should have expected. As we are in a complete market, there is a unique

martingale measure Q̄ which gives us conditions on the drift and volatility of the two considered assets

St and Yt, namely that their Sharpe ratios have to coincide (and vanish under Q̄), which then gives an

arbitrage-free model. The arbitrage-free price is simply derived by computing the conditional expectation

of the claim under the respective unique martingale measure.

This is exactly what above calculations show: the utility indifference price pU (x, q;h) is purely indepen-

dent of the individual risk aversion and is given by the arbitrage-free Black-Scholes price. In other words,

the price for which an investor is indifferent between holding q contracts of h(YT ) and trading in St and

only trading in St is equal to the fair price for which there is no arbitrage in the market. Note that the

price is also independent of q, hence the price for q units of h(YT ) is linear in q, which won’t be the case

anymore under incompleteness as there will always be some risk left and the individual aversion towards

risk comes into play. It can therefore be concluded that the power of no arbitrage is stronger and purely

determines market prices than the power of the individual risk aversion, which has no impact at all.

Lastly, we want to emphasize that in this whole study presented up to now, Assumption 1 does not have

to be satisfied due to the utility independence of our results. Hence above formula is also valid for e.g. a

’short Call’ position among others.

But in contrast to that, when we are dealing with an incomplete market framework, this relationship

won’t exist anymore and the individual utility will have a more significant effect on the results.

3.2.2 Incomplete Basis Risk Model

In what follows, we present the case where |%| < 1. It turns out, that not all risk can be described by

one Brownian motion, as there is a second one not perfectly correlated to the first. Hence, we are in a

setting with two, not identical sources of risk. Clearly, any position in h(YT ) cannot be replicated by just
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using St, thus the market is incomplete and some unhedgeable risk is always left over. Therefore, the

individual aversion towards risk will play a crucial role and will have a significant impact on the results.

On the other hand, Assumption 1 will come into play and ’short Call’ options are not anymore possible

to be treated.

We study two cases separately, beginning with the incomplete market model with power law utility.

3.2.2.1 Incomplete Basis Risk Model with Power Law Utility

We will now state the main theorem of this chapter and present a rigorous proof. It gives us the optimal

strategy of investing into St and from this the value function which then can be used to derive average

utility indifference prices.

Theorem 3.2.1. ([Hen02, Theorem 4.1])

1. Define Ct := EQmin [h(YT )|Ft] and CYt := ∂
∂Y EQmin [h(YT )|Ft]. Then for h and q satisfying Assump-

tion 1, the optimal strategy is given by

π̃?t (Xt, q;h) = π̃1
t (Xt, q;h) + o(q) for q → 0,

where

π̃1
t (Xt, q;h) :=

µ

σ2R
(Xt + qCt)− %

η

σ
qCYt Yt.

2. Using π̃1
t , we define

u1
UR(Xt, q;h) :=

X1−R
t

1−R
e

1−R
R

µ2

2σ2
(T−t)

(
1 + q

Ct
Xt
− q2

2
Rη2(1− %2)EP̂

[∫ T

t

Y 2
u (CYu )2

(X0
u)2

du

])1−R

,

where
dP̂
dP

:= E
(
µ(1−R)

σR
·B
)
T

,

and X0
u is the optimal wealth derived by following the optimal strategy π̃0

t := µ
σ2RX

0
t . Then for q, h

satisfying Assumption 1, the value function is given by

uUR(Xt, q;h) = u1
UR(Xt, q;h) + o(q2) for q → 0.

Remark 3.2.1.

� Theorem 3.2.1 shows that even if markets are not complete and agents are exposed to some un-

hedgeable remaining risk, the agent still invests a constant fraction of his current wealth into St

and additionally hedges away the risk arising from Bt by a (proxy) Delta hedge. The magnitude

of this Delta hedge heavily depends on the correlation and the larger the correlation in magnitude

is, the higher weight the Delta hedge term carries in the overall strategy. Intuitively, this is clear:

The closer related resp. correlated the two assets St and Yt are, the more profitable it is to go into

a certain position of St for hedging purposes.

� We will later establish and investigate using some concrete examples the impact of the second

order term and the error an investor would made if she uses naively the hedging strategy from the

complete case in an incomplete market scenario. We refer to Section 3.3.
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� Concerning the second statement of above theorem, we see that Qmin was a good guess for a mini-

mizing probability measure as it (or a slightly adjusted version of it) appears in various arguments.

For example, the measure P̂ is obtained from Qmin by a numeraire change (see Chapter 6 for more

details).

Moreover, in the proof we will derive lower and upper bounds in terms of u1
UR

(x, q;h). For the latter

we switch to the dual problem and it turns out that also there a modified version of the minimal

martingale measure will help us out.

� We also want to point out the appearance of %2 and by this the symmetry in the value function

seen as a function of %. This is due to the different hedging positions an investor can take in,

meaning that if we consider two scenarios with risky assets St, Yt having correlations %1 resp. %2

with 1 > %1 = −%2 > 0, then this yields in the same value function (i.e. the same maximal expected

utility at time T ) and the approximative hedge (i.e. the positions in St) differs then just by the

sign, i.e. by a long resp. short position, but gives the same protection against risk.

For perfectly correlated assets St and Yt, the value function remains the same as in the complete

market case. In contrast to this, for non-correlated assets (i.e. % = 0), an agent would not take any

money aside for hedging, as hedging is purely useless, and this yields in a (maximal) deduction in

the value function as there is unhedgeable risk left over.

� Lastly, we want to emphasize that the expression of u1
UR

(x, q;h) and the value function from the

complete market model agree up to order q. The additional second-order term

q2

2
Rη2(1− %2)EP̂

[∫ T

t

Y 2
u (CYu )2

(X0
u)2

du

]
,

which is always nonnegative, can be seen as a deduction from the initial value function from the

complete case due to the presence of unhedgeable risk. It is given by a constant times the over time

and over paths averaged square of a (scaled) Delta hedge term. We do not directly see the exact

intuition in this setting for this term. That is why we will consider a general semimartingale model

in the small claim limit (see Chapter 6), and surprisingly, this term will appear there as well in a

more intuitive setting.

Let’s turn our attention to the proof of this powerful theorem.

Proof. ([Hen02, Theorem 4.1]) The idea is as follows: We will show that the strategy π̃1
t is optimal by

deriving upper and lower bounds for the supremum of expected utility agreeing up to order q2 with

u1
UR

(x, q;h).

For the lower bound, we consider a cleverly chosen strategy (with a localizing argument that guarantees

that wealth remains positive) and derive for the value function a lower bound in terms of u1
UR

(x, q;h).

To find an upper bound in terms of u1
UR

(x, q;h), we consider the dual problem and a slightly adjusted

version of Qmin. [HH04]

It will be crucial in our study to have Assumption 1 as we will need that qh(YT ) ≥ 0. This is satisfied

under Assumption 1 (ii). For (i), we have to distinguish two cases. If q > 0, then qh(YT ) ≥ 0. Else, write

−|q|h = −|q|B+ |q|(B−h). Thus the payoff at time T can be split into a positive part minus a constant.

Lastly, we note that adding constants to claims does not have any impact on the second order terms.

For simplicity, we set t = 0. Of course, everything could be proven in the case 0 < t < T , we just have

to replace expectations by conditional expectations.

Now we can turn our attention to the value function and derive a lower bound in terms of u1
UR

(x, q;h).
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Lower bound

In a first step, we consider the case where we have no claim h(YT ). This case was established previously.

Denote by X0
t and H̃0

t =
π̃0
t

X0
t

the optimal wealth resp. relative amount of cash invested in St. Then we

have seen that dX0
t = π̃0

t
dSt
St

with π̃0
t = µ

σ2RX
0
t is given by

X0
t = x0 exp

(
µ2

σ2R
t− µ2

2σ2R2
t+

µ

σR
Bt

)
.

We note here that under the minimal martingale measure Qmin, we have that X0
t is a martingale. Indeed

X0
t = x0 exp

(
µ2

σ2R
t− µ2

2σ2R2
t+

µ

σR

(
B̃t −

µ

σ
t
))

= x0 exp

(
µ

σR
Bmin
t − 1

2

µ2

σ2R2
t

)
= E

( µ

σR
·Bmin

)
t
,

where Bmin
t := Bt + µ

σ t is a Qmin-Brownian motion.

We use now the aforementioned localizing argument to guarantee that wealth remains positive as we

work with power law utilities which are only supporting positive wealths. For a fixed K > 0, define

τK = inf

{
u ≥ 0 :

∫ u

0

1

X0
t

(
− µ

σ2R
Ct +

η%

σ
YtC

Y
t

)(dSt
St
− µdt

R

)
= K

}
.

Suppose that K > 0 and q < 1
2K
−1. Consider the wealth process X1,K

t generated from an initial wealth

x0 > 0 using the stopped strategy

π̃1,K
t :=

µ

σ2R

(
X1,K
t + qCt1t<τK

)
− η%

σ
qYtC

Y
t 1t<τK .

Then

dX1,K
t = π̃1,K

t

dSt
St

=
µ

σ2R
X1,K
t

dSt
St

+
µ

σ2R
qCt1t<τK

dSt
St
− η%

σ
qYtC

Y
t 1t<τK

dSt
St

,

which then gives that X1,K
t can be written in a generalized stochastic exponential form12

X1,K
t =

∫ t

0

X1,K
s dZs +Ht,(3.2.12)

for dZs :=
(

µ
σ2R ·

dS
S

)
s

and dHt := q1t<τK
(

µ
σ2RCt −

η%
σ YtC

Y
t

)
dSt
St

. By [Pro04, Theorem V.52], we have

that X1,K
t is explicitly given by

X1,K
t = X0

t

(
1 + q

∫ t∧τK

0

1

X0
u

[ µ

σ2R
Cu −

η%

σ
YuC

Y
u

] [dSu
Su
− µ

R
du

])
.(3.2.13)

We note that on the event {τK < T}, we have that

X1,K
T = X0

T (1− qK)

12Note that the well-known stochastic exponential Xt = E(Z)t is defined trough Xt = 1 +
∫ t
0 XsdZs for a continuous

semimartingale Zt. Here we have also an exogenous driving term Ht which make the calculations less straightforward. The

solution can be derived by variation of constants and is given by Xt = EH(Z)t = E(Z)
(
H0 +

∫ t
0+ E(Z)−1

s d(Hs − 〈H,Z〉s)
)

,

see [Pro04, Theorem V.52].
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and more generally

X1,K
T ≥ X0

T (1− qK),

meaning that the wealth process is bounded from below and positive as q < 1
2K
−1. Moreover, we have

that X1,K
t is a Qmin-martingale. Indeed we have from [Pro04, Theorem V.6, Theorem V.7] that X1,K

t is

a semimartingale. By applying Itô’s formula, one easily sees that the drift of X1,K
t under Qmin vanishes.

Then by the uniform boundedness from below, we then have that X1,K
t is a supermartingale. Lastly, the

martingale property follows by noticing that the term ( µ
σRCt− η%YtC

Y
t ) affects the martingale property.

Under the assumption of at least polynomial growth of our claim h, this term is square-integrable which

gives us that the stochastic integral is indeed a martingale and by this X1,K
t as well.

Consider Zq,KT := X1,K
t + qCt, which gives on {τK ≥ t} using the PDE satisfied by Ct

dZq,Kt = π̃1,K
t

dSt
St

+ q

(
∂tCtdt+ CYt dYt +

1

2
CY Yt Y 2

t η
2dt

)
= π̃1,K

t

dSt
St

+ qCYt

(
Ytνdt+ Ytη

(
%dBt +

√
1− %2dWt

))
=

µ

σ2R
Zq,Kt

dSt
St

+ qYtC
Y
t

(
νdt− η%

σ
µdt
)

+ qYtC
Y
t η
√

1− %2dWt

=
µ

σ2R
Zq,Kt

dSt
St

+ qYtC
Y
t η
√

1− %2dWt,

where we used in the last equality the fact that X1,K
t as well as Ct are Qmin-martingales which yields that

the drift of Zq,Kt has to vanish under Qmin
13. This implies that we have that Zq,Kt can be represented

in the form of (3.2.12) with dZs :=
(

µ
σ2R ·

dS
S

)
s

and dHt := qYtC
Y
t η
√

1− %2dWt and hence by [Pro04,

Theorem V.52], we have that on {τK ≥ t}

Zq,Kt = X0
t

(
1 + q

(
EQmin [h(YT )]

x0
+

∫ t

0

YuC
Y
u

X0
u

η
√

1− %2dWu

))
.

We record that

Zq,KT = X1,K
T + qh(YT ) ≥ X0

T (1− qK) + qh(YT ) ≥ X0
T (1− qK),

which is bounded from below. Here, we used the Assumption of qh(YT ) ≥ 0. Let’s turn our attention to

the utility function UR(x):

Using Taylor expansion for UR(x) around X0
T gives, for 0 ≤ ξ ≤ 1

UR(Zq,KT ) = UR(X0
T ) + (Zq,KT −X0

T )U ′R(X0
T ) +

1

2
(Zq,KT −X0

T )2U ′′R(X0
T + ξ(Zq,KT −X0

T )).

Now, consider the P-expectation of above term. The first term gives EP[UR(X0
T )] = uUR(x0, q; 0), as the

strategy π̃0
t was chosen optimal. Moreover, note that

U ′R(X0
T ) =

1

xR0
exp

(
µ2

2σ2

1−R
R

T

)
dQmin

dP
.

13To be more precise, we know that the Qmin-dynamics of dSt
St

are given by σdB̃t and that W̃t = Wt is a Qmin-Brownian

motion. Hence the first and third term together build a Qmin-martingale, hence the middle term, the drift, has to vanish
to guarantee that everything together remains a martingale.
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It follows for the second term that

EP
[(
Zq,KT −X0

T

)
U ′R(X0

T )
]

= EP
[
X1,K
T U ′R(X0

T )
]

+ EP [qCTU ′R(X0
T )
]
− EP [X0

TU
′
R(X0

T )
]

= x−R0 exp

(
1−R
R

µ2

2σ2
T

)
EQmin [qh(YT )] ,

where we have used in the third equation that X0
t and X1,K

t are martingales under Qmin and hence the

first and third term vanish. Indeed, we have

EP
[
X1,K
T U ′R(X0

T )
]

= EP
[
X1,K
T x−R0 exp

(
µ2

2σ2

1−R
R

T

)
dQmin

dP

]
= x−R0 exp

(
µ2

2σ2

1−R
R

T

)
EQmin

[
X1,K
T

]
= 0,

and

EP [X0
TU
′
R(X0

T )
]

= x−R0 exp

(
µ2

2σ2

1−R
R

T

)
EQmin

[
X0
T

]
= 0.

For the third term in Taylor’s expansion, we have that X0
T +ξ(Zq,KT −X0

T ) ≥ X0
T (1−qK) by setting ξ = 1.

It follows that on {τK ≥ T}, we have that (Zq,KT −X0
T ) = qX0

T

(
EQmin [h(YT )]

x0
+
∫ T

0
YuC

Y
u

X0
u
η
√

1− %2dWu

)
and that on {τK < T}, we have that (Zq,KT −X0

T ) = q(CT −X0
TK). Then, as U ′′R(x) is increasing,

q−2(Zq,KT −X0
T )2U ′′R(X0

T + ξ(Z1,K
T −X0

T ))

≥ (X0
T )2

(
EQmin [h(YT )]

x0
+

∫ T

0

YtC
Y
t

X0
t

η
√

1− %2dWt

)2

U ′′R(X0
T (1− qK))1τK≥T

+
(
h(YT )−X0

TK
)2
U ′′R(X0

T (1− qK))1τK<T .

Taking expectations and the limit as q → 0 and rearranging the terms in Taylor’s expansion yields

lim
q→0

q−2
(
EP[UR(Zq,KT )]− EP[UR(X0

T )]− qEP[h(YT )U ′R(X0
T )]
)

(3.2.14)

=
1

2
lim
q→0

q−2EP
[
(Zq,KT −X0

T )2U ′′R(X0
T + ξ(Z1,K

T −X0
T ))
]

≥ 1

2
EP

(X0
T )2

(
EQmin [h(YT )]

x0
+

∫ T

0

YtC
Y
t

X0
t

η
√

1− %2dWt

)2

U ′′R(X0
T )1τK≥T


+

1

2
EP
[(
h(YT )−X0

TK
)2
U ′′R(X0

T )1τK<T

]
,

where we used the dominated convergence theorem to change the order of the limit and the integral.

If we let K →∞, the lower bound in (3.2.14) becomes

1

2
EP

(X0
T )2

(
EQmin [h(YT )]

x0
+

∫ T

0

YtC
Y
t

X0
t

η
√

1− %2dWt

)2

U ′′R(X0
T )

 .(3.2.15)

We define a new probability measure P̂ by dP̂
dP := E

(
µ(1−R)
σR ·B

)
T

, and note that B̂t := Bt − µ(1−R)
σR t as

well as Ŵt := Wt are Brownian motions under this new measure.
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Then (3.2.15) becomes, using the known form of U ′′(x) = −Rx−R−1

−R
2
EP

(X0
T )1−R

(
EQmin [h(YT )]

x0
+

∫ T

0

YtC
Y
t

X0
t

η
√

1− %2dWt

)2


= −R
2
x1−R

0 exp

(
1−R
R

µ2

2σ2
T

)
EP̂

(EQmin [h(YT )]

x0
+

∫ T

0

YtC
Y
t

X0
t

η
√

1− %2dWt

)2


= −R
2
x1−R

0 exp

(
1−R
R

µ2

2σ2
T

)[(
EQmin [h(YT )]

x0

)2

+ η2(1− %2)EP̂

[∫ T

0

(YtC
Y
t )2

(X0
t )2

dt

]]
.(3.2.16)

Summarizing, we have shown that

lim sup
K→∞

lim
q→0

(
EP[UR(Zq,KT )]− EP[UR(X0

T )]− qEP[h(YT )U ′R(X0
T )]
)
≥ (3.2.16)

and finally we have, using (1 + z)α ≤ 1 + αz + α(α−1)
2 z2 for z ≥ 0 and α ≤ 1

uUR(x0, q;h) ≥ EP[UR(Zq,KT )]

≥ uUR(x0, q; 0) + qx−R0 exp

(
1−R
R

µ2

2σ2
T

)
EQmin [h(YT )]

− q2R

2
x1−R

0 exp

(
1−R
R

µ2

2σ2
T

)[(
EQmin [h(YT )]

x0

)2

+ η2(1− %2)EP̂

[∫ T

0

(YtC
Y
t )2

(X0
t )2

dt

]]
+ o(q2)

≥ u1
UR(x0, q;h) + o(q2),

which gives us the desired lower bound.

Upper bound

Based on (2.1.1), we will apply the dual approach for finding an upper bound on the value function

uUR(x, q;h) in terms of u1
UR

(x, q;h). Then we are going to choose the probability measure in a clever

(closely related with Qmin) way to obtain a high order bound.

Our goal is to show that uUR(x, q;h) ≤ u1
UR

(x, q;h) + εq2 for any ε > 0.

For this, we define

Mt := η
√

1− %2

∫ t

0

YuC
Y
u

X0
u

dWu, 0 ≤ t ≤ T.

And for K > 0 define

TK := inf{t ≥ 0 : |Mt|+ 〈M〉t = K}.

Choose K large enough such that for some fixed ε > 0

EP̂ [〈M〉T − 〈M〉TK ] < ε.

We introduce a new probability measure QK given by

dQK
dP

= exp

(
−µ
σ
BT −

µ2

2σ2
T

)
exp

(
−RqMTK −

1

2
R2q2〈M〉TK

)
.
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We remark at this point that QK is closely related to Qmin, that is, we have

dQK
dP

=
dQmin

dP
exp

(
−RqMTK −

1

2
R2q2〈M〉TK

)
.

Then we have for the convex conjugate VR(y) that the generalized entropy term is given by

EP
[
VR

(
y
dQK
dP

)]
=

R

1−R
y
R−1
R AK ,

for AK given by (recall the definition of P̂ in the proof of the lower bound)

AK = exp

(
−µ(R− 1)

σR
BT −

µ2(R− 1)

2σ2R
T

)
exp

(
−(R− 1)qMTK −

1

2
R(R− 1)q2〈M〉TK

)
= exp

(
µ2

2σ2R

1−R
R

T

)
EP̂
[
exp

(
1

2
(1−R)q2〈M〉TK

)]
.

By definition of TK , we have that 〈M〉TK is bounded by K, thus AK can be expanded

AK = exp

(
µ2

2σ2R

1−R
R

T

)[
1 +

1

2
(1−R)q2EP̂[〈M〉TK ] +O(q4)

]
≤ exp

(
µ2

2σ2R

1−R
R

T

)[
1 +

1

2
(1−R)q2

(
EP̂[〈M〉TK ]− ε1R>1

)
+O(q4)

]
.

By the definition of QK and the explicit form of Qmin, we get

EQK [h(YT )] = EP
[
h(YT )

dQmin

dP
exp

(
−RqMTK −

1

2
R2q2〈M〉TK

)]
,

which can be written, using exponential expansion again, as

EQK [h(YT )] = EQmin [h(YT ) (1− qRMTK + o(q))]

= EQmin [h(YT )]− qREQmin [MTKh(YT )] + o(q).

Let’s turn our attention to Mt and Ct. By definition we have that Ct is a Qmin-martingale. It turns out,

that Mt is a Qmin-martingale as well under the assumption of at most polynomial growth of the claim

h and as Wt is also a Qmin-Brownian motion turning the stochastic integral into a (square-integrable)

martingale. Therefore, using the stopping theorem (as TK is finite a.s.), we conclude that the stopped

process MTK is a martingale, too.

Thus Itô’s formula resp. the formula of integration by parts for MtCt gives, using the martingale property

and the definition of the quadratic covariation process 〈·, ·〉t

EQmin [MTKh(YT )] = 0 + EQmin

[∫ T

0

Mt∧TKdCt

]
+ EQmin

[∫ T

0

CtdMt∧TK

]
+ EQmin

[∫ T

0

d〈M·∧TKC·〉t

]

= EQmin

[∫ T

0

d〈M·∧TK 〉t

]
= η2(1− %2)EQmin

[∫ TK

0

Y 2
t (CYt )2

X0
t

dt

]
.(3.2.17)
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By the definition of X0
T and P̂, we get

(
X0
T

x0

)1−R

= exp

(
µ(1−R)

σR
BT +

µ2(1−R)

σ2R
T − 1

2

µ2(1−R)

σ2R2
T

)
=
dP̂
dP

exp

(
µ2

2σ2

1−R
R

T

)
.

In the same way, we obtain

dQmin

dP
=

(
X0
T

x0

)−R
exp

(
µ2

2σ2

R− 1

R
T

)
.

As mentioned earlier, we record that P̂ and Qmin by a numeraire change

dP̂
dQmin

=
X0
T

x0
.(3.2.18)

We can use those representations to conclude that

(
EP̂[〈M〉TK ] =

)
EP̂ [M2

TK

]
= EP

 M2
TK

exp
(
µ2

2σ2
R−1
R T

) (X0
T

x0

)1−R
(3.2.19)

=
1

x0
EQmin

[
M2
TKX

0
T

]
=

1

x0
EQmin

[∫ TK

0

X0
ud〈M2〉u

]

=
η2(1− %2)

x0
EQmin

[∫ TK

0

Y 2
t (CYt )2

X0
t

dt

]
,

using again Itô’s integration by parts formula as X0
T and Mt are Qmin-martingales.

Combining (3.2.19) and (3.2.17), we get that

EQmin [MTKh(YT )] = x0EP̂[M2
TK ] = x0EP̂[〈M〉TK ] < K,(3.2.20)

as 〈M〉t is the unique right-continuous and increasing process such that M2
t − 〈M〉t is a martingale for a

(square-integrable) martingale Mt. From this we can conclude that, using exponential expansion in the

definition of QK

EQK [h(YT )] = EQmin [h(YT )] + qREQmin [MTKh(ST )] + o(q)

= EQmin [h(YT )]− qRx0EP̂ [〈M〉TK ] + o(q).

Finally, as we already have seen previously

uUR(x, q;h) ≤ inf
y≥0

{
R

1−R
y
R−1
R AK + yx+ qyEQK [h(YT )]

}
=

1

1−R
(AK)R(x+ qEQK [h(YT )])1−R
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and putting pieces together yields

uUR(x, q;h) ≤ inf
y≥0

{
EP
[
V

(
y
dQK
dP

)
+ y

(
x+ EQK [h(YT )]

)]}
≤ 1

1−R

(
exp

(
µ2

2σ2R

1−R
R

T

)[
1 +

1

2
(1−R)q2

(
EP̂[〈M〉TK ]− ε1R>1

)
+O(q4)

])R
(
x+ q

(
EQmin [h(YT )]− qRx(EP̂[〈M〉TK ]− ε) + o(q)

))1−R

≤ u1
UR(x, q;h) + Cεq2,

for some constant C, where we additionally used (3.2.20), (3.2.19) and the derived representations of the

measure changes dP̂
dP and dQmin

dP respectively.

Given that we have derived an expansion of the optimal strategy and value function up to order q resp.

q2, we can derive the average utility indifference price pUR(x, q;h) up to order q:

Corollary 3.2.1. ([Hen02, Theorem 4.2]) In the setting of Theorem 3.2.1, the average utility indifference

price pUR(Xt, q;h) at time t per unit for q units of h(YT ) is given by

pUR(Xt, q;h) = EQmin [h(YT )|Ft]− q
R

2

η2

Xt
(1− %2)EP̂

[∫ T

t

Y 2
u (CYu )2

(X0
u/Xt)2

du

]
+ o(q)

= EQmin [h(YT )|Ft]− q
R

2
η2(1− %2)EQmin

[∫ T

t

Y 2
u (CYu )2

X0
u

du

]
+ o(q).

Remark 3.2.2. Here we have also the symmetry in % as discussed in Remark 3.2.1 which is clear in this

context.

Proof. To find the average utility indifference price pUR(Xt, q;h), we have to solve

uUR(Xt, q; 0) = uUR(Xt − qpUR(Xt, q;h), q;h).

This can be written by using Theorem 3.2.1, as

X1−R
t = (Xt − qpUR)1−R

[
1 +

qEQmin [h(YT )|Ft]
Xt − qpUR

− q2

2
Rη2(1− %2)EP̂

[∫ T

t

Y 2
u (C̄Yu )2

(X0
u)2

du

]]1−R

.

The first order term of pUR(Xt, q;h) is easily seen to be EQmin [h(YT )|Ft]. The second order term is more

involved. By making the ansatz

p = EQmin [h(YT )|Ft] + kq = Ct + kq

in above equation and solving for k, while using the fact that X0
t = Xt− qp, one finds the desired result.

The change from P̂ to Qmin is straightforward by (3.2.18).

Note. If we consider the marginal price of a derivative, that is the limiting price as q → 0, we find

lim
q→0

pUR(x, q;h) = EQmin [h(YT )|Ft].(3.2.21)
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We want to point out that this marginal price is independent of the agent’s individual risk aversion and is

given by the conditional expectation under the minimal martingale measure of the claim, which is equal

to the Black-Scholes price.

3.2.2.2 Incomplete Basis Risk Model with Exponential Utility

We record that the canonical example of an exponential utility function is given by

Uα(x) = − 1

α
e−αx.

It turns out, that for this utility function, even explicit price formula can be derived. Hence, we do not

have to consider the small claim limit.

Theorem 3.2.2. ([Hen02, Theorem 5.1]) Assume that q and h satisfy Assumption 1. Then the average

utility indifference price pU (Xt, q;h) at time t for q units of h(YT ) is (explicitly) given by

pUα(Xt, q;h) =
−1

αq(1− %2)
log
(
EQmin

[
exp(−qα(1− %2)h(YT ))

])
.

Proof. This proof is quite involved and needs a lot of calculations. For details, we refer to [Hen02,

Section 5]. However, we will see later in Chapter 4 an alternative approach, where we recover this

formula again.

From this, we easily obtain (can be checked by Taylor expansion) the following expansion for small

position sizes.

Theorem 3.2.3. ([Hen02, Section 5]) In the setting of Theorem 3.2.2, we have

pUα(Xt, q;h) = EQmin [h(YT )|Ft]−
α

2
q(1− %2)

[
EQmin [h(YT )2|Ft]− [EQmin [h(YT )|Ft]]2

]
+O(q2).

If we make use of the (local) relation between the absolute risk aversion α and the relative risk aversion

R (derived in Remark 2.0.1 ), namely that α = R
Xt

, we get

pUα(Xt, q;h) = EQmin [h(YT )|Ft]−
R

2Xt
q(1− %2)

[
EQmin [h(YT )2|Ft]− [EQmin [h(YT )|Ft]]2

]
+O(q2).

Remark 3.2.3. Here we see that the average utility indifference price under exponential utility is inde-

pendent of the wealth Xt at time t.

Corollary 3.2.2. Also in this case, we have for the marginal price that

lim
q→0

pUα(x, q;h) = EQmin [h(YT )|Ft].

Proof. This is easily seen as a consequence of the expansion for small position sizes.

In this case, we even have more: [Mon08, Theorem 5] shows, that

lim
q→0

pUα(x, q;h) = lim
α→0

pUα(x, q;h) = EQmin [h(YT )|Ft],(3.2.22)

hence the marginal price coincides with the average utility indifference price for zero absolute risk aversion

and is given by the arbitrage-free Black-Scholes price.
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A risk-neutral investor (this is an investor who is indifferent between various payoffs with the same

expected value but not the same risk) is willing to pay the arbitrage-free Black-Scholes price. In other

words, the risk-neutral investor does not care if the market is complete or not (i.e. if there is unhedgeable

risk) and she is willing to pay the price from the complete model.

3.3 Examples

We finish this chapter by giving concrete examples to illustrate the results.

3.3.1 Call Option

3.3.1.1 Optimal Strategy

We consider h(YT ) = (YT −K)+, the example of a Call option. By Assumption 1, we must have that

q > 0, hence we are in the situation of a long Call option position. Our goal is to find an optimal

strategy of investing into the risky and traded asset St, when an agent holds a small position q in h(YT ).

Under the measure Qmin, we have seen that Yt has drift δ = ν − µη
σ % and more explicitly

dYt
Yt

= δdt+
η%

σ
(σdBt + µdt) + η

√
1− %2dWt.

Moreover, Bmin
t := Bt + µ

σ t and Wmin
t := Wt are Qmin-Brownian motions. Hence we may define

Zmin
t := %Bmin

t +
√

1− %2Wmin
t

= %
(
Bt +

µ

σ
t
)

+
√

1− %2Wt,

which is clearly a Qmin-Brownian motion correlated to Bmin
t and Wmin

t . With this, the dynamics of Yt

reduce to

dYt
Yt

= δdt+ ηZmin
t ,

and hence, still under Qmin

YT = Y0 exp

((
δ − 1

2
η2

)
T + ηZmin

T

)
.

By this we obtain with standard arguments a Black’s formula for finding an explicit formula for the

value of the claim at time 0 ≤ t ≤ T

Ct = EQmin
[
(YT −K)+

∣∣Ft]
= eδ(T−t)Y0Φ(d1)−KΦ(d2),

for d1,2 =
log(Y0K )+δ(T−t)± 1

2η
2(T−t)

η
√
T−t .
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We have seen in Theorem 3.2.1 that the optimal strategy π̃?, assuming power law utility, is given by

π̃?t = π̃1
t + o(q)

=
µ

σ2R
(x+ qCt)−

η%

σ
qYtC

Y
t + o(q)

=
µ

σ2R
x+ qeδ(T−t)YtΦ(d1)

[ µ

σ2R
− η%

σ

]
− µ

σ2R
qKΦ(d2) + o(q),

where we used that CYt = eδ(T−t)Φ(d1). We can now illustrate this results using concrete parameters and

visualize the results.

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, µ = 0.04, σ = 0.35, ν = 0.03, η = 0.30.

We see in Figure 3.3.1, that we have a linear dependence between π̃1
0 and % if we fix Y0. However, given

a fixed correlation %, we don’t have this linearity anymore, which is clear from above formula. Note that

the drift δ = ν − %µησ of Yt under Qmin varies for different %. For % = 0.875, we have that δ = 0.

(a) Plot of π̃1
0 for different values of Y0. (b) Plot of π̃1

0 for different values of %.

Figure 3.3.1: Plot of the optimal hedge π̃1
0 for a Call option.

In Figure 3.3.2, we take into account the effect of % and Y0 simultaneously. We observe that if the Call

option is far out-of-the-money (i.e. Y0 � K = 100), then the optimal strategy π̃1
0 is given by the (con-

stant) Merton hedging strategy π̃0 = µ
σ2Rx, which is, for our choice of the parameters, µ

σ2Rx ≈ 326.53. As

the option becomes closer to being in-the-money, 60 ≤ Yt ≤ K say, the optimal strategy already changes

significantly as Ct gets involved. This is of course due to the positive probability that the option can

turn in-the-money until time T = 1 and hence the agent has to hedge this risk away. Depending on the

sign of %, the optimal strategy in- resp. decreases as the option becomes farer in-the-money. However,

this is plausible as the agent acts optimally, i.e. she hedges her risk away by taking in a position in

St. For example, in the case of % = 1, there is only one source of risk, hence we are in a situation of a

complete market framework and the investor can hedge herself perfectly with a Delta hedge in St (which

is a short position) and this leads to a decrease of the overall amount of money put into the risky asset St.

Lastly, we investigate the sensitivity of π1
0 with respect to the drift µ. Optimal strategies relative to

the Merton hedge for two different values of µ are plotted in Figure 3.3.3. In the case of µ = 0, the
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Figure 3.3.2: Plot of π̃1
0 relative to Merton hedge for a Call option.

hedging strategy is only given by π̃1
0 = −η%σ qe

δ(T−t)YtΦ(d1), hence exactly by the Delta hedging strategy

(adjusted for investing into St) from the Black-Scholes model. We point out that the larger µ, the more

we have the effect that the quantities invested into St for hedging Call options being in-the-money are

increased. The reason is seen in the fact that the constant proportion µ
σ2R of current wealth (which is

Xt + qCt) increases. By subtracting the constant Merton hedge µ
σ2RXt, we see that the part with the

option price gets a higher weight and especially for Call options being in-the-money, the hedging strategy

increases.

(a) Optimal strategy π̃1
0 for µ = 0. (b) Optimal strategy π̃1

0 for µ = 0.1.

Figure 3.3.3: Plot of optimal hedge π̃1
0 for two different drifts for a Call option
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3.3.1.2 Pricing

Our next interest lies in the average utility indifference price pU (x, q;h) at time t = 0 which is given by

pU (x, q;h) = EQmin

[
(YT −K)

+
]
− qR

2
η2(1− %2)EQmin

[∫ T

0

Y 2
u (CYu )2

X0
u

du

]
+ o(q).

For the first term, we just derived the explicit expression

C0 = eδTY0Φ(d1)−KΦ(d2)

for d1, d2 as given above, whereas for the second term (we omit the factor q)

R

2
η2(1− %2)EQmin

[∫ T

0

Y 2
u (CYu )2

X0
u

du

]

this is no longer possible and hence we will simulate this based on the known representations of the terms

inside the integral.

Let us again record the chosen parameters.

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, % = 0.8, µ = 0.04, σ = 0.35, ν = %ηµσ , η = 0.30.

Note, that for simplification we choose ν such that the drift of Yt under Qmin is zero. Indeed, by this

choice of parameters, we get ν ≈ 0.027, close to the choice in above paragraph.

Using above parameters with a fixed correlation of % = 0.8, we get for an at-the-money Call option for

the first order term the value of 11.9235 while the second order term is approximately given by 0.0477,

i.e. 0.4% of the first. Taking the factor q in front of the second order term into account leads us to a

percentage of around q ∗ 0.4% = 0.004% of the first order term. Hence, the second order term is for very

small position sizes clearly negligible and even for q = 1, the deviation from the first order term prices is

petty.

Note that the first order term is nothing else than the risk-neutral price from the complete model (i.e.

the Black-Scholes price) with the a priori fixed parameters as we assume δ = 0, hence purely independent

of % and q.

Therefore we see in Figure 3.3.4 the typical Black-Scholes price dynamics of a long position in a Call

option given by the first order term, whereas we see in the middle the dynamics of the second order term,

which has a negative impact on the first order term. Everything aggregated is seen in the right plot and

represents the utility indifference price in the small claim limit. For comparison reasons, we artificially

included the payoff profile at time T by the dotted line.

Paying special attention to the second order term, we point out that in the case of increasing Y0, the

second order term has nearly a linear growth characteristic on the interval [0, 200] with a very small

slope 14. The price dynamics with respect to the underlying process in the area of Y0 ≤ 90 are very

close to the classical Black-Scholes price dynamics and the price spread increases as the option gets farer

in-the-money.

14However, it turns out that the second order term has a quadratic growth behavior.
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(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.4: Different price plots with varying Y0 for a Call option.

Moreover, we also provide the price dynamics for exponential utilities, where we use the (local) relation

of α = R
x0

as already seen.

We get for the value of the Call option at time t = 0

pUα(x, q;h) = C0 − q
R

2x
(1− %2)

[
EQmin [h(YT )2]− C2

0

]
,

where

EQmin [h(YT )2] = Y 2
0 exp

(
2δT + η2T

)
Φ(d1 + η

√
T )− 2KY0Φ(d1) +K2Φ(d2).

Everything aggregated is plotted in Figure 3.3.5 (we omit the factor q for plotting the second order term).

(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.5: Different price plots with varying Y0 for a Call option under exponential utility.

It can be concluded that, independently of the utility function, the results are roughly on par. This is

clear, as the first order term is purely independent of the individual utility function and the second order

terms are relatively small.

However, the attentive reader notices that the second order term for exponential utility is sparsely larger.

This is of course not obvious by what we have seen so far and we try to explain this heuristically.

We have the following relationship for the two considered utility functions, when risk aversion goes to
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zero 15

lim
α→0

1− e−αx

α
= x = lim

R→0

x1−R

1−R
.

As power utility is only defined on the positive real line while exponential utility is defined on the whole

real line, there is no reason why we should expect the same limiting behavior for the risk aversion

parameter converging to zero. Therefore, we consider Figure 3.3.6, which consists of the second order

terms with respect to R (and α
x ).

We see here that for a value of R = 0.5, the difference is approximately given by 0.02, of course also

negligible.

Figure 3.3.6: Plot of the second order terms with varying risk aversion R for an ATM Call option.

Lastly, Figure 3.3.7 shows simultaneously the dynamics of the average utility indifference price pU (x, q;h)

with respect to both the correlation % as well as the position size q near zero.

Of course, for % = 1, we recognize the arbitrage-free price p ≈ 11.9235 from the complete model. We can

also see that the area around (% = 1, q = 0) is quite robust and does not differ much from the arbitrage-

free price. But as the position size grows, the resulting negative second order term gets a higher weight

and hence a resulting higher impact.

Moreover, independently of the growth rate of q and %, the resulting limiting price is always the arbitrage-

free Black-Scholes price. This is not anymore the case in the large claim limit as treated in Chapter 4.

15Note that the proper definition of exponential utility including zero absolute risk aversion is given by Uα(x) = 1−e−αx
α

and U0(x) = x. As we never have dealt with zero absolute risk aversion before, our initial definition of Uα(x) = − 1
α
e−αx

was not false as they only differ, for positive fixed absolute risk aversion, by a constant. We have seen that utility functions
are unique up to linear transformations.
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Figure 3.3.7: pU (x, q;h) with respect to % and q for a Call option.

3.3.2 Put Option

The very same procedure can be applied for a Put option.

3.3.2.1 Optimal Strategy

Consider h(YT ) = (K − YT )+. We may assume that q > 0, hence we are in the setting of a long Put

option position.

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, µ = 0.04, σ = 0.35, ν = 0.03, η = 0.30.

We get

Ct = EQmin
[
(K − YT )+

]
= KΦ(−d2)− Y0e

δ(T−t)Φ(−d1),

for d1,2 =
ln(Y0K )+δ(T−t)± 1

2η
2(T−t)

η
√
T−t .

This gives

π̃1
t =

µ

σ2R
x+ qYte

δ(T−t)Φ(−d1)
[
− µ

σ2R
+
η%

σ

]
+

µ

σ2R
qKΦ(−d2).

Figure 3.3.8 shows that as the option is in-the-money, the optimal strategy increases when compared

with the constant Merton hedge µ
σ2Rx ≈ 326.53. This is of course due to the fact that the Delta hedge is

a long position in St.

Everything aggregated and relative to the Merton hedge, we see in Figure 3.3.9 that as long as the

correlation is positive, the optimal strategy consists of the Merton hedge plus an additional positive

position in St, while in the other case, the hedge becomes a short position, hence has an overall negative

impact on the optimal strategy.
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(a) Plot of π1
t for different values of Yt. (b) Plot of π1

t for different values of %.

Figure 3.3.8: Plot of the optimal hedge π̃1
t for a Put option.

Figure 3.3.9: Plot of π̃1
0 relative to Merton hedge for a Put option.

Moreover, we also investigate Figure 3.3.10 the behavior of the optimal hedging strategy π̃1
0 for different

µ. Also here, for µ = 0, we recover the classical Delta hedging strategy (modified for investing into St)

from Black-Scholes model. Additionally, the strategies for Put options being in-the-money increase by

increasing the drift µ. Seeing the reason, we can adopt the argument as given in the example of the Call

option.

We turn our attention to the pricing dynamics.

3.3.2.2 Pricing

Again, our next interest lies in the average utility indifference price pU (x, q;h) which is given by

pU (x, q;h) = EQmin

[
(K − YT )

+
]
− qR

2
η2(1− %2)EQmin

[∫ T

0

Y 2
u (CYu )2

X0
u

du

]
+ o(q).
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(a) Optimal strategy π̃1
0 for µ = 0. (b) Optimal strategy π̃1

0 for µ = 0.1.

Figure 3.3.10: Plot of optimal hedge π̃1
0 for two different drifts for a Put option

The first term is given by

Ct = KΦ(−d2)− eδ(T−t)Y0Φ(−d1),

for d1, d2 as given above, hence

CYu = −eδ(T−u)Φ(−d1).

By this, the second order term is given by (we omit the factor q)

R

2
η2(1− %2)EQmin

[∫ T

0

Y 2
u (CYu )2

X0
u

du

]
.

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, % = 0.8, µ = 0.04, σ = 0.35, ν = %ηµσ , η = 0.30.

In Figure 3.3.11 we simulate the first resp. second order term and the aggregated average utility indiffer-

ence price pU (x, q;h). Also here, we artificially included the payoff structure at time T for a long position

in the Put option.

For one unit of a Put option with Y0 = 80 and K = 100, we get a value of 23.5344 for the first order

term, whereas the second order term is now 0.0764, hence approximately 0.32% of the first order term.

Also here, the second order term is clearly negligible for small position sizes.

Also for the Put option, we provide the price dynamics under exponential utility, see Figure 3.3.12. In

this case, the average utility indifference price is given by

pUα(x0, q;h) = C0 − q
R

2x0
(1− %2)

[
EQmin [h(YT )2]− C2

0

]
,

where

EQmin [h(YT )2] = K2Φ(−d2)− 2KY0Φ(−d1) + Y 2
0 exp((2δ + η2)T )Φ(−d1 − η

√
T ).
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(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.11: Different price plots with varying Y0 for a Put option.

(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.12: Different price plots with varying Y0 for a Put option under exponential utility.

The rough dynamics look similar and the second order term under exponential utility is in this case

a slightly smaller than the one under power utility. The reasoning can be adapted from the previous

example and is visualized in Figure 3.3.13.

Figure 3.3.13: Plot of the second order terms with varying risk aversion R for an ATM Put option.

The difference for R = 0.5 and Y0 = K = 100 is approximately 0.005, which coincides with the difference
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seen when comparing Figure 3.3.11 with Figure 3.3.12. But as the second order term is almost negligible,

this small difference does not have any impact on the utility indifference price.

Figure 3.3.14: pU (x, q;h) with respect to % and q for a Put option

In Figure 3.3.14, we see the price dynamics with respect to % and q simultaneously. Also in that case, it

turns out that, independently of the rate of convergence of q and %, the limiting price is always given by

the arbitrage-free Black-Scholes price. This phenomenon is no longer true in the large claim limit.
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3.3.3 Power Option

3.3.3.1 Optimal Strategy

Consider the non-standard claim h(YT ) = Y 2
T . This is a financial instrument, that pays at maturity T

the holder the square of the stock value at time T . Note that in either case, there will be a payout, which

was not the case of before presented example of a Call and Put option respectively. Again by Assumption

1, we require that q > 0. We then get

C0 = EQmin
[
Y 2
T

]
= EQmin

[(
Y0 exp

((
δ − 1

2
η2

)
T + ηZmin

T

))2
]
,

which reduces to

C0 = Y 2
0 exp

(
2δT + η2T

)
,

and more generally to

Ct = Y 2
0 exp

(
2δ(T − t) + η2(T − t)

)
.

By this, we obtain the optimal strategy as

π̃?t =
µ

σ2R
x+ qY 2

t exp
(
(2δ + η2)(T − t)

) [ µ

σ2R
− 2

η%

σ

]
+ o(q).

Let us specify the parameters used.

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, µ = 0.04, σ = 0.35, ν = 0.03, η = 0.30.

(a) Plot of π̃1
t for different values of Yt. (b) Plot of π̃1

t for different values of %.

Figure 3.3.15: Plot of the optimal hedge π̃1
t for a non-standard claim.

In Figure 3.3.15 resp. Figure 3.3.16 we see the hedging behavior of the agent. In the extreme scenario of
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% = −1 and Y0 = 200, the investor should take in a position in St that exceeds by far our initial wealth

of x = 500 (∼ 1400).

This is reasonable as if an investor holds q = 0.01 units of h(YT ) = Y 2
T , and Y0 is already at level of 200,

then she takes in a huge position in St due to the fact that she wins in either the position qh(YT ) or in

St. In contrast to that, she acts in the opposite direction if % = 1 and takes in even a short position.

Figure 3.3.16: Plot of the optimal hedge π̃1
t relative to Merton hedge for a non-standard claim.

(a) Optimal strategy π̃1
0 for µ = 0. (b) Optimal strategy π̃1

0 for µ = 0.1.

Figure 3.3.17: Plot of optimal hedge π̃1
0 for two different drifts for a non-standard claim.

Moreover, in Figure 3.3.17, we present hedging strategies with respect to two different values of the drift

µ. Figure 3.3.17 (a) shows the typical hedging strategy from the Black-Scholes model, as we chose µ = 0.

On the other hand, we present in Figure 3.3.17 (b) the hedging strategies for the drift µ = 0.1. Also

here, we note that the larger µ, the higher the amount of money put into St due to the reason that the

constant fraction µ
σ2R of money invested into St increases.
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3.3.3.2 Pricing

We are now interested in pricing such an instrument. The average utility indifference price is given by

pU (x, q;h) = EQmin
[
Y 2
T

]
− qR

2
η2(1− %2)EQmin

[∫ T

0

Y 2
u (CYu )2

X0
u

du

]
+ o(q),

where CYt = 2Y0 exp((2δ + η2)(T − t)). We have seen an explicit formula for the first term, whereas for

the second term, we again simulate it. Due to the power-like behavior of the optimal strategy, we focus

on the interval Y0 ∈ [0, 5].

Parameters - We choose the following parameters:

q = 0.01, T = 1, t = 0, K = 100, x = 500, R = 0.5, % = 0.8, µ = 0.04, σ = 0.35, ν = %ηµσ , η = 0.30.

(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.18: Different price plots with varying Y0 for a non-standard payoff.

Again, we provide the price dynamics under exponential utility, see Figure 3.3.19. We have that

pUα(x0, q;h) = C0 − q
R

2x0
(1− %2)

[
EQmin [h(YT )2]− C2

0

]
,

where

EQmin [h(YT )2] = EQmin [Y 4
T ] = Y 4

0 exp((4δ + 6η2)T ).

(a) First order term. (b) Second order term. (c) pU (x, q;h).

Figure 3.3.19: Different price plots with varying Y0 for a non-standard payoff under exponential utility.
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Figure 3.3.18 and Figure 3.3.19 show the pricing dynamics of the Power option. In this case, the difference

between the two second order terms is enormous. Figure 3.3.20 shows the spread between the two second

order terms for Y0 with respect to the risk aversion.

Figure 3.3.20: Plot of the second order terms with varying risk aversion R for Power option (Y0 = 2).

3.4 Conclusion

We have studied in the small claim limit the somehow classical approach to utility indifference pricing of

claims on a nontraded asset Yt. Classical is meant in the sense of intuitive as we considered the intuitive

idea of taking into account closely related assets to protect oneself from the arising risk.

In practice, this approach is widely used and accepted. For instance, pricing a financial instrument on

some family (often called basket) of shares (e.g. in form of a structured product), one can treat each

single share as nontradable due to high transaction costs and one can use a closely related index for

pricing and hedging this claim.

Rigorously speaking, we started with the Classical Black-Scholes-Merton Model and then artificially

added a closely related, nontraded asset to the model. In the complete case, where this close relation

is indeed perfect, we presented that this adjusted model is nothing else than a classical Black-Scholes-

Merton problem with a modified strategy. This modification arises as the agent hedges herself perfectly

from the risk arising from h(YT ) by a Delta hedge in St. In this scenario, the claim h(YT ) has a unique,

utility-independent price which is given by the arbitrage-free price from classical valuation in complete

markets.

If the market is not anymore complete, in order to specify a particular price for a claim and optimal

hedging strategies, we have to introduce the agent’s individual aversion towards risk by specifying her

individual utility function. We considered such with either constant relative risk aversion (i.e. power

utility) or constant absolute risk aversion (i.e. exponential utility).

In the case where there is some non-vanishing hedging error, we provided a first order approximation

for the optimal strategy in a neighborhood of q = 0, which is, surprisingly, given by a slightly adjusted

version of the optimal strategy derived from the complete case in the sense that the second order term

(for Delta hedging) gets less involved as the magnitude of % decreases. By specifying the optimal strategy,
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we implicitly constructed an optimal hedging strategy. We then have seen that the modification of the

optimal strategy has an interesting interpretation - it is due to the fact that the agent protects herself

with a (not anymore perfect) Delta hedge.

By this we also derived an expression for the value function up to order q2 and even explicit formulae for

average utility indifference prices up to the same order.

Also under exponential utility, we presented an explicit pricing formula. This is an advantage of the

considered utility function: Calculations become more tractable and in some cases even explicit formulae

(without forced to consider the small claim limit) can be derived. However, we also provided an expansion

of the value function around q = 0.

Lastly, we have applied our results to concrete examples in the case of power law utility and exponential

utilities. We have studied optimal strategies and average utility indifference prices in the case of Call,

Put and Power options. Surprisingly, the main driver for determining prices lies in the first order term

which is the arbitrage-free Black-Scholes price. In the example of a Call option (q = 0.01), the second

order term is 0.004% of the first order term, hence clearly negligible.

A disadvantage of this approach lies in the disability of pricing short Call options. This is due to the

fact that we needed some assumptions to ensure that we do not get into trouble with our mathematical

development.

All these results were studied in the limit as q → 0, i.e. in the small claim limit. We shall see in the next

chapter that also a large claim limit approach can be applied.
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Large Claim Limit Approach

In this chapter, we present an alternative approach to the one studied in the previous chapter. We

will study the value function in the large claim limit, i.e. in the range of large position sizes and high

correlations. Our main reference is [Rob13]: Pricing for Large Positions in Contingent Claims (2013),

Mathematical Finance, Forthcoming.

The approach lies in the study of the behavior of the value function unU (x, qn;hn) in the stochastic factor

resp. basis risk model as n → ∞ by allowing the markets (i.e. the correlation of the assets) as well

as the position size qn to vary under the constraints of %n → 1 and qn → ∞. Economically speaking,

we consider prices in a sequence of markets that become asymptotically complete in the limit while the

position size grows to infinity. We point out, that the large position sizes can also arise endogenously, in

the sense that by the market convergence, roughly speaking, prices will also converge in some sense to

a limiting price. If this limiting price is not equal to the arbitrage-free Black-Scholes price, then large

position sizes (possibly infinite position sizes) come into play as agents try to make use of this asymptotic

arbitrage opportunity.

Moreover, it is important to not restricting the markets to a fixed market as in such a case, by increasing

the position size, the unhedgeable component (per unit) poses an overall large risk and therefore only

two cases can occur. Either, the agent does not hold a large position as it is too risky or she is only

willing to pay the lowest possible (arbitrage-free) price. By allowing the markets to vary, and under the

assumption that hedging errors converge to zero (i.e. %n → 1), we avoid such a scenario. Nevertheless,

we will provide results that explain exactly above heuristic arguments mathematically.

In one of our main results, we will investigate the different drivers for the average utility indifference price

pnU (x, qn;hn) in the limit, i.e. as the markets become asymptotically complete due to vanishing hedging

errors. Depending on the speed of qn growing to infinity, we will see that it is worth distinguishing three

different market regimes. It turns out that they differ significantly in their limiting price and we will see

the so-called large position effect - an effect that enables an investor with a large position size to push

prices towards the superreplication price. We then finally examine these results using concrete examples.

Moreover, we investigate the behavior of the difference of two utility indifference prices with the same

growth rate for large negative wealths in the large claim limit. It turns out that this difference will vanish

in the limit.

Lastly, we will see that in the basis risk model with exponential utility function, the optimal position size

in h(YT ) (in the sense of maximized expected utility at time T ) to be taken by the investor satisfies the
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heuristic relationship given the agent can buy the claims for an arbitrage-free price p ∈ I(h)

(4.0.1) risk aversion × position size × hedging error ≈ const.

Thus, for a given risk aversion, larger positions come along with lower hedging errors and vice versa. Or,

put differently, large position sizes can also affect the agent’s risk aversion.

It turns out that if position size × hedging error ≈ 0, then prices converge to the Black-Scholes price.

As a consequence, investor would not hold a large position in the claim, therefore this regime can be

compared with the small claim limit as established in Chapter 3. Moreover, if position size × hedging

error ≈ constant, then the limiting price is given by the canonical exponential utility price. Hence in

this case it seems that incompleteness procreates the most and can still observed in the limit. Due to

the asymptotic arbitrage opportunity, the large claim limit arises endogenously in this regime. Lastly, if

position size × hedging error explodes, we are in the framework as described previously that the agent

is only willing to pay the lowest arbitrage-free price, which is somehow unsatisfactory. But it turns out,

that the latter regime won’t appear when agents are acting optimally.

Let us first state some auxiliary results which will be needed later in our study.

4.1 Auxiliary Results

In this section, we consider a filtered probability space (Ω, (Ft)0≤t≤T ,F,P) satisfying the usual conditions.

The first lemma gives us some helpful equivalences on the generalized relative entropy for U ∈ Uα, resp.

U ∈ Up,l. These will be often used when applying the dual approach.

Lemma 4.1.1. ([Rob13, Lemma A.2]) Let Y ≥ 0. Then the following statements are equivalent:

1) EP[V (yY )] <∞ for all α > 0, U ∈ Uα and y > 0.

2) EP[V (yY )] <∞ for some α > 0, U ∈ Uα and y > 0.

3) EP[Y log(Y )] <∞.

Moreover, let p > 1 and set γ := p
p−1 . Then the following statements are equivalent:

A) EP[V (yY )] <∞ for all l > 0, U ∈ Up,l and y > 0.

B) EP[V (yY )] <∞ for some l > 0, U ∈ Up,l and y > 0.

C) EP[Y γ ] <∞.

Proof. The main idea of the proof lies in using (2.0.1) resp. (2.0.2) to get explicit formulae for V in terms

of Vα resp. Vp.

Let α > 0 and U ∈ Uα. We know by (2.0.1) that Vα(y) = y
α (log(y) − 1) and that limy→∞

V (y)
Vα(y) = 1.

Therefore, for every ε > 0, we can find M = M(ε, U) such that for y ≥M , we have the following bounds

on V (y) for y lying outside the disk with radius M :

1− ε
α

y(log(y)− 1) ≤ V (y) ≤ 1 + ε

α
y(log(y)− 1).
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As |V (y)| as well as |y(log(y)) − 1)| are bounded on the compact set [0,M ], there exists a constant

C = C(ε,M) > 0 such that we have the following bounds on the whole real line

−C +
1− ε
α

y log(y) ≤ V (y) ≤ C +
1 + ε

α
y log(y).

We then get the implications 1) =⇒ 2) trivially, 2) =⇒ 3) by considering the first inequality and

finally 3) =⇒ 1) by the sandwich principle. This proves the first assertion.

We know by (2.0.2) that for every ε > 0 there exists some constant M = M(ε, U) such that for y ≥ M ,

we have

(1− ε)l̂yγ ≤ V (y) ≤ (1 + ε)l̂yγ .

Again, by the boundedness of |V (y)| and yγ , we get the existence of a C > 0 such that on the whole real

line

−C + (1− ε)l̂yγ ≤ V (y) ≤ C + (1 + ε)l̂yγ .

The equivalences A) ⇐⇒ B) ⇐⇒ C) follow in a similar manner as above.

The next lemma shows that under some conditions, we have the differentiability of y 7→ EP[V (yY )] with

even surjective derivative. This will later be used among others in a proof of a statement that rules out

asymptotic arbitrage.

Lemma 4.1.2. ([Rob13, Lemma A.3]) Let α > 0, p > 1, l > 0. Let U ∈ Uα ∪ Up,l. Furthermore, let

Y ≥ 0 be a random variable with EP[Y ] = 1 and such that EP[V (Y )] <∞. Then:

� The map y 7→ EP[V (yY )] is differentiable with derivative EP[Y V ′(yY )].

� For any x ∈ R, there exists a unique y such that EP[Y V ′(yY )] = x, hence the derivative is surjective.

Proof. For ε > 0 and z ≥ 0, we consider

f(ε, z) :=
V ((y + ε)z)− V (yz)

ε
− V (yz)

y
.

We first note that f(ε, 0) = 0. As V is convex, V ′ is strictly increasing, hence

∂zf(ε, z) =
y + ε

ε
(V ′((y + ε)z)− yV ′(yz)) ≥ 0.

Moreover, the convexity of V implies that

f(ε, Y ) ≤ εV ((1 + y)Y ) + (1− ε)V (yY )− V (yY )

ε
− V (yY )

y
= V ((1 + y)Y )− V (yY )− V (yY )

y
.

Hence taking the P-expectation of above inequality yields that EP[f(ε, Y )] < ∞ for all ε > 0, y > 0 and

even for the limit as ε→ 0 due to the previous lemma.

By this, we can apply dominated convergence to f(ε, Y ) yielding that

∂yEP[V (yY )] = lim
ε→0

EP[V ((y + ε)Y )]− EP[V (yY )]

ε
= EP[Y V ′(yY )].

Now consider the map g(y) := EP[Y V ′(yY )]. We note that g is strictly increasing by the strict convexity

of V . As limy→0 yV
′(y) = 0, there is some constant C > 0 such that Y V ′(yY ) > −C for y > 1. By the
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Inada conditions, it follows that

lim
y→∞

g(y) ≥ EP[lim inf
y→∞

Y V ′(yY )] =∞.

Denote by ŷ the unique y such that V ′(ŷ) = 0. We can split g into two parts:

lim
y→0

g(y) = lim
y→0

EP[Y V ′(yY )1yY≤ŷ]︸ ︷︷ ︸
1)

+ lim
y→0

EP[Y V ′(yY )1yY >ŷ]︸ ︷︷ ︸
2)

.

For the first part we get, as limy→0 V
′(y) = −∞

1) ≤ EP[lim sup
y→0

Y V ′(yY )1yY≤ŷ] = −∞,

and for the second term, since y < 1, we have that V ′(yY ) ≤ V ′(Y ) and hence

2) = lim
y→0

EP[Y V ′(Y )1yY >ŷ] ≤ CEP[V (Y )] <∞.

Hence g(y)→ −∞ for y → 0 and together with the fact that g(y) is strictly increasing we have completed

the proof.

In what follows, we present results that give some upper resp. lower bounds on infy>0
1
y (EP[V (yY )] +u),

which will be used later to get bounds for the average utility indifference price (more precise bounds on

the entropic penalty functional) and to derive convergence results.

Lemma 4.1.3. ([Rob13, Lemma A.4]) Let α > 0, p > 1 and l > 0. Let furthermore u > 0, Y ≥ 0 be such

that EP[Y ] = 1. Then, for each 0 < ε < u, there exists a constant C(ε, U) > 0 (independent of Y and u)

such that

inf
y>0

1

y
(EP[V (yY )] + u) ≤ C(ε, U) +


1 + ε

α
EP[Y log(Y )] + u for U ∈ Uα

1

α
EP[Y log(Y )] + u for U ∈ Ũα

(l(u+ ε))
1
p ((1 + ε)EP[Y γ ])

1
γ for U ∈ Up,l.

Proof. Let U ∈ Uα. We first note that infy>0
1
y (EP[V (yY )] + u) ≤ EP[V (Y )] + u. By the proof of Lemma

4.1.1, there is a constant C = C(ε, U) such that

EP[V (Y )] + u ≤ C +
(1 + ε)

α
EP[Y log(Y )] + u.

Hence the case for U ∈ Uα is proven.

Consider U ∈ Ũα and define

fU (z) := V (z)− 1

α
z(log z − 1) = V (z)− Vα(z).

We then get that lim supz→∞
|fU (z)|
z < ∞ as limz→∞

V (z)
Vα(z) = 1 and by the definition of Ũα. Since

fU (0) = 0, there exists some M = M(ε, U) such that for z > 0 we have fU (z) ≤M(1 + z) (also here, we

rely on the property of U ∈ Ũα) and thus

EP[V (Y )] + u ≤ 1

α
EP[Y log(Y )] + EP[fU (Y )] + u ≤ 1

α
EP[Y log(Y )] + 2M + u.
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Lastly, let U ∈ Up,l. Recall the property of U in (2.0.2). For 0 < ε < u, we then get that, as limz→0 V (z) =

0, there exists some M = M(ε, U) such that V (z) < ε for z < 1
M , V (z) ≤ M for 1

M ≤ z ≤ M and

V (z) ≤ (1 + ε)l̂zγ for z > M. Thus conditioning on these three sets gives

1

y
(EP[V (yY )] + u) ≤ u+ ε

y
+M

1

y
P[yY ≥ 1

M
]︸ ︷︷ ︸

≤M by Markov ineq.

+(1 + ε)l̂yγ−1EP[Y γ ].

From this it follows that

inf
y>0

(
1

y
(EP[V (yY )] + u)

)
≤M2(ε, U) + inf

y>0

(
u+ ε

y
+ (1 + ε)l̂EP [Y γ ]

)
≤M2(ε, U) + γ

(
u+ ε

γ − 1

) 1
p (

(1 + ε)l̂EP[Y γ ]
) 1
γ

= C(ε, U) + (l(u+ ε))
1
p
(
(1 + ε)EP[Y γ ]

) 1
γ ,

as desired, which completes the proof.

Lemma 4.1.4. ([Rob13, Lemma A.5]) Let α > 0, p > 1 and l > 0. Let furthermore u > 0, Y ≥ 0 be

such that EP[Y ] = 1. Then for each 0 < ε < min{u, 1}, there exist constants C(ε, U) and D(ε, U) > 0

(independent of Y and u) such that

inf
y>0

1

y
(EP[V (yY )] + u) ≥ −C(ε, U) +


1− ε
α

EP[Y log(Y )] +D(ε, U) log(u) for U ∈ Uα
1

α
EP[Y log(Y )] +D(ε, U) log(u) for U ∈ Ũα(
l
(
u− ε

2

)) 1
p (

(1− ε)EP[Y γ ]
) 1
γ for U ∈ Up,l.

Proof. The proof follows the same pattern as the proof of Lemma 4.1.3.

Let 0 < ε < min{u, 1}. Let U ∈ Uα. We recall the properties of U and V respectively in (2.0.1) and that

V (0) = 0. This gives us the existence of some M = M(ε, U) such that on {z < 1
M } we have V (z) ≥ − ε2 ,

on { 1
M ≤ z ≤M} we have V (z) ≥ U(0) and finally V (z) ≥ (1− ε) 1

αz(log z − 1) anywhere else.

Again, we condition on the three sets which leads us to, as U(0) < 0

1

y

(
EP[V (yY )] + u

)
≥
u− ε

2

y
+ U(0)

1

y
P[yY ≥ 1

M
]︸ ︷︷ ︸

≤M by Markov ineq.

+
1− ε
α

(
EP[Y (log(yY )− 1)(1− 1yY≤M )]

)
.

Now we use that EP[Y (log(yY )− 1)1yY≤M ] ≤ log(M)− 1 which yields

1

y
(EP[V (yY )] + u) ≥

u− ε
2

y
+ U(0)M +

1− ε
α

log(y) +
1− ε
α

EP[Y log(Y )]− 1− ε
α

log(M).

We have that

(4.1.1) U(0)M + inf
y>0

(
1− ε
α

log(y) +
u− ε

2

y

)
= U(0)M +

1− ε
α

(
1 + log

(
α(u− ε

2 )

1− ε

))
.

Subtracting 1−ε
α log(M) on both sides of (4.1.1) and adding and subtracting 1−ε

α log(u) on the right-hand
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side gives

inf
y≥0

1

y
(EP[V (yY )] + u) ≥ U(0)M +

1− ε
α

(
1 + log

(
α(u− ε

2 )

1− ε

))
− 1− ε

α
log(u)− 1− ε

α
log(M)

+
1− ε
α

EP [Y log(Y )] +
1− ε
α

log(u).

Simplifying all the terms gives us the conditions

−C(ε, U) := U(0)M +
1− ε
α

(
1 + log

(
α

2M(1− ε)

))
D(ε, U) :=

1− ε
α

,

where we used that 1− ε
2u ≥

1
2 .

Let U ∈ Ũα and define fU (z) again by

fU (z) := V (z)− 1

α
z(log(z)− 1).

From the proof of Lemma 4.1.3, we know that f(0) = 0 and that lim supz→∞
|fU (z)|
z <∞. For ε > 0, there

exist M = M(ε, U) and K = K(ε, U) such that on {z < 1
M }, we have fU (z) ≥ − ε2 , on { 1

M ≤ z ≤ M},
we have fU (z) ≥ −K and finally fU (z) ≥ −Kz anywhere else. Therefore, again by conditioning on the

three sets, we get

1

y
EP[fU (yY )] ≥ − ε

2y
−K 1

y
P[yY ≥ 1

M
]︸ ︷︷ ︸

≤M by Markov ineq.

−KEP[Y 1yY >M ] ≥ − ε

2y
−K(1 +M).

This leads to

1

y
(EP[V (yY )] + u) =

1

α
EP[Y (log(Y )− 1)] +

1

y
EP[fU (yY )] +

u

y

≥
u− ε

2

y
+

1

α
log(y) +

1

α
EP[Y log(Y )]− 1

α
−K(1 +M).

Calculations as in the first part of the proof yield the desired result.

Finally, for U ∈ Up,l, as seen in the proof of Lemma 4.1.3, the estimates on the three different sets are

the same, except for z > M , we have V (z) ≥ (1− ε)l̂zγ which then gives

1

y
(EP[V (yY )] + u) ≥

u− ε
2

y
+ U(0)M + (1− ε)l̂yγ−1EP[Y γ(1− 1yY≤M )]︸ ︷︷ ︸

≤(1−ε)l̂(yγ−1EP[Y γ ]−Mγ−1)

.

Again, calculations as in the first part of the proof yield the desired result.

Now we have finally established results that will be of great help in the following study of price conver-

gence.

4.2 Convergence of Prices in the Large Claim Limit

To study the convergence of prices, we assume that we work on a sequence of filtered probability spaces

(Ωn, (Fnt )0≤t≤T ,Fn,Pn) satisfying the usual conditions.
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4.2.1 Indifference Prices in the Large Claim Limit for Exponential Utility

Functions

The goal is now to study the behavior of the average utility indifference price pnU (x, qn;hn), in particular

the limit of it as qn →∞ and %n → 1. Large Claim Limit indicates on the one hand that the position

size grows to infinity and on the other hand that, asymptotically, the markets (Ωn, (Fnt )0≤t≤T ,Fn,Pn)

converge to a complete market as hedging errors become negligible while not permitting any arbitrage

opportunity. Therefore, we are interested in the convergence of the markets and the position sizes

simultaneously. To ensure no asymptotic arbitrage (no nirvana), some additional assumptions will be

needed. We are already aware of the conditions for excluding arbitrage opportunities even in the limit of

this sequence of markets: see Section 2.2.1, in particular Lemma 2.2.1.

4.2.1.1 Convergence of Prices

These are the afore-remarked assumptions:

Assumption 2. Uniform boundedness of h, i.e. ‖h‖ := supn ‖hn‖L∞(Ωn,Fn,Pn) <∞.

Assumption 3. M̃n 6= ∅ for each n and lim supn→∞ infQn∈M̃n H(Qn|Pn) <∞.

Note. It is Assumption 3 that rules out arbitrage opportunities for every market (Ωn, (Fnt )0≤t≤T ,Fn,Pn)

on [0, T ] when investing in Sn as well as in the limit when n → ∞. We have seen this in Lemma 2.2.1.

[OŽ09, Theorem 1.9]

The next theorem shows that under these assumptions, the difference between two average utility indif-

ference prices vanishes for utilities belonging to the same (exponential) class.

Theorem 4.2.1. ([Rob13, Theorem 3.4]) Let α > 0 and Assumption 2 and Assumption 3 hold. If

qn →∞, then for all U1, U2 ∈ Uα and x1, x2 ∈ R, we have

lim
n→∞

|pnU1
(x1, qn;hn)− pnU2

(x2, qn;hn)| = 0.

Remark 4.2.1.

� As we have that for U ∈ Uα : pnU (x, qn;hn) = −pnU (x,−qn;−hn), above result can also be stated for

qn → −∞, i.e. for large short positions. In the sequel we will just speak of ’large positions’ and

mean either cases.

� By letting n tend to ∞ or roughly speaking in the limit market, the individual utility function

U ∈ Uα has no impact and pnU (x, qn;hn) converges to pnUα(x, qn;hn) - to the price an investor with

the canonical exponential utility function is willing to pay for large claims. Hence for pricing large

claims, one could directly work with the canonical example of Uα ∈ Uα.

� The economical interpretation of this is the following: An investor should identify her rate of decay

for large negative wealths and if she finds that limx→−∞− 1
x log(−U(x)) = ᾱ, then she should price

as she were having utility Uᾱ = − 1
ᾱe
−ᾱx.

� In summary, above theorem states that only the asymptotic attitude towards big losses will have

an impact on prices. Due to the fact that exponential utility prices are independent of the current

wealth, this is plausible.
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Proof. Let α > 0, U ∈ Uα and x ∈ R. By Lemma 2.2.1, we can choose ε > 0 such that for n large enough

ε < −unU (x, q; 0).

We rely on the following lemma:

Lemma 4.2.1. ([OŽ09, Proposition 7.2 (vi)]) Assume that hn is sub- and superreplicable (in the sense of

(2.1.3)) and that the utility function U ∈ C2(R) satisfies the Inada conditions as well as the Conditions

of Reasonable Asymptotic Elasticity. Then we have for V being the convex conjugate to U that

pnU (x, qn;hn) = inf
Qn∈M̃n

(
EQn [hn(YT )] +

1

qn
αnU (Qn)

)
,(4.2.1)

where the entropic penalty functional αnU is given by

(4.2.2) αnU (Qn) := inf
y>0

1

y

(
EPn

[
V

(
y
dQn

dPn

)]
+ xy − unU (x, qn; 0)

)
.

Proof of Lemma 4.2.1. We refer to [OŽ09, Proposition 7.2].

Proof of Theorem 4.2.1 (continued). Write ZQn := dQn
dPn for the density of Qn with respect to Pn. Then,

(4.2.1) becomes

pnU (x, qn;hn) = inf
Qn∈M̃n

(
EPn

[
hn(YT )ZQn

]
+

1

qn
αnU (Qn)

)
.

By Lemma 4.1.3 with u = −unU (x, q; 0) and Y = ZQn , we get that there is a constant C = C(ε, U) such

that

pnU (x, qn;hn) ≤ inf
Qn∈M̃n

(
EQn [hn(YT )] +

1 + ε

qnα
H(Qn|Pn)

)
+
x+ C(ε, U)− unU (x, qn; 0)

qn
.

Similarly from Lemma 4.1.4, we have

pnU (x, qn;hn) ≥ inf
Qn∈M̃n

(
EQn [hn(YT )] +

1− ε
qnα

H(Qn|Pn)

)
+
x− C(ε, U) +D(ε, U) log(−unU (x, qn; 0))

qn
.

We then consider the function

f(δ, n) := inf
Qn∈M̃n

(
EQn [hn(YT )] + δH(Qn|Pn)

)
for δ > 0,

which is obviously increasing in δ. Assumption 3 yields that

f(δ, n) ≤ ‖h‖+Kδ for some K > 0,

as infQn∈M̃n H(Qn|Pn) ≤ lim supn→∞ infQn∈M̃n H(Qn|Pn) =: K <∞.
For 0 < δ < γ and for any Q ∈ M̃n, we get the trivial inequality

EQn [hn(YT )] + γH(Qn|Pn) ≤ γ

δ

(
EQn [hn(YT )] + δH(Qn|Pn)

)
+
(γ
δ
− 1
)
‖h‖,

hence

f(γ, n)− f(δ, n) ≤
(γ
δ
− 1
)

(f(δ, n) + ‖h‖) ≤
(γ
δ
− 1
)

(2‖h‖+Kδ).
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Let U1, U2 ∈ Uα and x1, x2 ∈ R. Then choose ε > 0 such that

ε ≤ −unUi(xi, q; 0) ≤ −Ui(xi) for i = 1, 2.

We have that

pnU1
(x1, qn;hn)− pnU2

(x2, qn;hn)

≤
(x1 + C(ε, U1)− unU1

(x1, qn; 0))− (x2 − C(ε, U2) +D(ε, U2) log(−unU2
(x2, qn; 0)))

qn

+ f

(
1 + ε

qnα
, n

)
− f

(
1− ε
qnα

, n

)
≤ C(n, ε)

qn
+ f

(
1 + ε

qnα
, n

)
− f

(
1− ε
qnα

, n

)
≤ C(n, ε)

qn
+

(
1− ε
1 + ε

− 1

)(
2‖h‖+K

1− ε
qnα

)
,

for C(n, ε) such that C(n,ε)
qn

→ 0 as qn →∞.

Thus

(4.2.3) lim sup
n→∞

(
pnU1

(x1, qn;hn)− pnU2
(x2, qn;hn)

)
≤ 2‖h‖

(
1− ε
1 + ε

− 1

)
.

As the left-hand side of (4.2.3) is independent of ε, we can pass to the limit ε → 0 and get the desired

result, as we can interchange the role of U1, U2 and x1, x2.

4.2.1.2 Convergence of Total Quantities

We now know that the difference between two average utility indifference prices vanishes in the limit for

utility functions belonging to the same exponential class. A natural question that one might be interested

in is whether the total money difference remains finite. Put differently, we investigate whether the speed

of price convergence is at least linear, that is, whether we have

qn
∣∣pnU1

(x1, qn;hn)− pnU2
(x2, qn;hn)

∣∣ <∞, as n→∞ ?

The answer is indeed yes, but not anymore for any U ∈ Uα but rather for U ∈ Ũα ⊂ Uα. This includes

the additional requirement to U ∈ Uα of

0 < lim inf
n→−∞

U(x)

Uα(x)
≤ lim sup

n→−∞

U(x)

Uα(x)
<∞.(4.2.4)

We have seen the example of U(x) ∈ Uα \ Ũα given by U(x) = − 1
xUα(x) for large negative wealths.

[Rob13, Example 3.12] shows that for such a utility function, the total money error does not remain

bounded.

Having strengthened the assumption to U , it then turns out that the assumption to hn can be weakened.

For the rest of this paragraph, we do not anymore assume the uniform boundedness of hn, but rather:

Assumption 4. For each n, we assume that hn ∈ L∞(Ωn,Fn,Pn).

Theorem 4.2.2. ([Rob13, Theorem 3.9]) Let α > 0. Assume further that Assumption 3 and Assumption
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4 hold. If qn →∞, then for all U1, U2 ∈ Ũα and x1, x2 ∈ R, we have

lim sup
n→∞

qn
∣∣pnU1

(x1, qn;hn)− pnU2
(x2, qn;hn)

∣∣ <∞.
Note. This theorem essentially states that an investor with utility function U ∈ Ũα may price as if

she were an investor with exponential utility function Uα ∈ Ũα and the resulting error of money spent

remains bounded - but the latter holding only under stronger assumptions to the utility function.

From a purely mathematical point of view, the requirement on U belonging to Ũα is needed as we then

get from Lemma 4.1.3 and Lemma 4.1.4 tighter bounds which gives us that the resulting relative entropy

terms are independent from ε, hence they will vanish in the difference.

Proof. The proof is similar to the proof of Theorem 4.2.1. We let α > 0, U ∈ Ũα and x ∈ R. From

Lemma 2.2.1, it follows that there exists ε > 0 such that −unU (x, qn; 0) ≥ ε for n large enough.

Using the representation of pnU (x, qn;hn) in terms of the entropic penalty functional αnU (Qn) in (4.2.2)

and referring to Lemma 4.1.3, we get the following upper bound

pnU (x, qn;hn) ≤ x+ C(ε, U)− unU (x, qn; 0)

qn
+ inf

Qn∈M̃n

(
EQn [hn(YT )] +

1

αqn
H(Qn|Pn)

)
.

Similarly, using Lemma 4.1.4, we get the lower bound

pnU (x, qn;hn) ≥ x− C(ε, U) +D(ε, U) log(−unU (x, qn; 0))

qn
+ inf

Qn∈M̃n

(
EQn [hn(YT )] +

1

αqn
H(Qn|Pn)

)
.

Let U1, U2 ∈ Ũα and x1, x2 ∈ R. Again, we choose ε > 0 such that ε ≤ −unUi(xi, qn; 0) ≤ −Ui(xi) for

i = 1, 2. Then

qn
∣∣pnU1

(x1, qn;hn)− pnU2
(x2, qn;hn)

∣∣
≤
∣∣(x1 + C(ε, U)− unU (x1, qn; 0))− (x2 − C(ε, U) +D(ε, U) log(−unU (x2, qn; 0))

∣∣ =: C(ε, U).

We note that supn C(ε, U) < ∞, hence we can take the limit for n → ∞ and interchange the roles of

U1, U2 and x1, x2 to get the desired result.

4.2.1.3 Pricing in a Fixed Market when only the Position is Changing

In what follows, we investigate the behavior of pU (x, qn;h) as n → ∞, i.e. the behavior of the average

utility indifference price in a constant kept market where the only change occurs in the position size qn of

the (constant kept) claim hn ≡ h. We have given heuristic observations in the beginning of this chapter

which are now strengthened by mathematical results.

Theorem 4.2.3. ([Rob13, (3.7)]) Under Assumption 2 and Assumption 3, we have that for all U ∈ Uα

lim
n→∞

pU (x, qn;h) = inf
Q∈M̃

EQ[h(YT )].

Proof. This proof can be found in [OŽ09, Proposition 7.5 (ii)].

Remark 4.2.2. The price an investor with utility function U ∈ Uα is willing to pay per unit for an

incredibly large position in a constant kept market is given by the superreplication price (see Theorem

2.2.1). Here we see the large position effect for the very first time. By purchasing enormously large
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positions, the investor is able to push prices towards the minimal possible arbitrage-free price. This is

reasonable as by the non-vanishing hedging error, the investor is exposed to huge risk when holding large

positions. Therefore, in the limit, she is only willing to pay the lowest arbitrage-free price.

4.2.1.4 Interchangeability of α and q in pnUα(x, q;hn)

In this paragraph, we want to emphasize the interchangeability with respect to indifference pricing of

the absolute risk aversion parameter α and the number of units held in the claim for the case of an

exponential utility Uα ∈ Uα. More concretely, recalling the explicit representation in (3.2.11), we have:

(4.2.5) pnUα(x, q;hn) =
1

αq
log

(
unUα(0, q; 0)

unUα(0, q;hn)

)
=

1

αq
log

(
qunUqα(0, 1; 0)

qunUqα(0, 1;hn)

)
= pnUqα(x, 1;hn),

as for any q, α > 0, we have that Uα(qx) = qUqα(x).

The left-hand side of (4.2.5) is the price, which an α-risk averse investor would pay per unit of hn to be

indifferent between owning q units of hn or not while the right-hand side is the price an αq-risk averse

investor would pay per unit to be indifferent between owning 1 unit of hn or not.

Giving an illustration, assume that q = 2. Hence the price per unit such that an investor being indifferent

between holding 2 units of hn and holding none coincides with the price per unit for which a twice as

high risk averse investor would be indifferent between holding one unit of the claim and holding none.

If we assume that q varies with n and qn → ∞, but the market and the claim are kept constant, then

above result can be written as

pUα(x, qn;h) = pUqnα(x, 1;h).

Taking limits as n→∞, we get by Theorem 4.2.3

lim
n→∞

pUqnα(x, 1;h) = inf
Q∈M̃

EQ[h(YT )].

The message of this is that as the absolute risk aversion qnα increases to infinity, and the markets and

claims are kept constant, we have that the average utility indifference price per unit of the claim h

converges to the minimal arbitrage-free price (= superreplication price). Infinite risk aversion is hard to

imagine - a good way is to think of it as ’comparing with the worst case scenario’. By this, it obviously

makes sense that superhedging goes together with infinite risk aversion.

We mentioned earlier in (3.2.22) that the limit of the price as risk aversion α goes to zero coincides with

the marginal utility price which is given by the arbitrage-free price. However, here we have established

the limiting prices for risk aversion going to plus infinity.

4.2.2 Convergence of Prices for Utilities with a Power-like Decay

The goal is now to establish similar results as in Theorem 4.2.1 for utility functions with a power-like

decay for large negative wealths. In order to obtain such results, one has to adjust the rate at which qn

becomes large in a suitable way. The reason for modifying the rate can best be observed in the proof of

the following theorem. We show that it does not work for qn →∞, but for knqn →∞ it does, for some

kn.

The equivalent to Assumption 3 for the case of power law utility to ensure no nirvana is the following.

Assumption 5. Assume that for each n: M̂n
V 6= ∅ and that lim supn→∞ infQn∈M̂n EPn [(dQ

n

dPn )γ ] <∞.
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Theorem 4.2.4. ([Rob13, Proposition 4.3]) Let p > 1 and l > 0. Let Assumption 2 and Assumption 5

hold. If qn →∞, then for all U1, U2 ∈ Up,l and x1, x2 ∈ R, we have

lim
n→∞

∣∣∣pnU1
(x1, qn(−unU1

(x1, qn; 0))
1
p ;hn)− pnU2

(x2, qn(−unU2
(x2, qn; 0))

1
p ;hn)

∣∣∣ = 0.

Proof. The proof is again similar to the one of Theorem 4.2.1. Let p > 1, l > 0, U ∈ Up,l and x ∈ R. We

recall Lemma 4.2.1, which gives us a pricing formula in terms of the entropic penalty functional, which

is valid for any utility U on the real line, therefore also for U ∈ Up,l. Hence

pnU (x, qn;hn) = inf
Qn∈M̂n

V

(
EQn [hn(YT )] +

1

qn
αnU (Qn)

)
,

for

αnU (Qn) = inf
y>0

1

y

(
EPn

[
V

(
y
dQn

dPn

)]
+ xy − unU (x, qn; 0)

)
.

Then by Lemma 2.2.1, for ε > 0, we have that ε < −unU (x, qn; 0) for n sufficiently large. Lemma 4.1.3

implies then that for an arbitrary position size qn, we have

pnU (x, qn;hn) ≤ x+ C(ε, U)

qn
+ inf

Qn∈M̂n
V

(
EQn [hn(YT )] +

1

qn
(l(−unU (x, qn; 0) + ε))

1
p (1 + ε)

1
γ EPn [(ZQn)γ ]

1
γ

)
.

In the same way, by Lemma 4.1.4, we have

pnU (x, qn;hn) ≥ x− C(ε, U)

qn
+ inf

Qn∈M̂n
V

(
EQn [hn(YT )] +

1

qn

(
l(−unU (x, qn; 0)− ε

2
)
) 1
p

(1− ε)
1
γ EPn [(ZQn)γ ]

1
γ

)
.

Consider the function

f̂(δ, n) := inf
Qn∈M̂n

V

(
EQn [hn(YT )] + δEPn [(ZQn)γ ]

1
γ

)
for δ > 0,

which is obviously increasing in δ and using Assumption 5, we get that f̂(δ, n) ≤ ‖h‖+Kδ.

Let 0 < δ < γ. Then for Qn ∈ M̂n
V , we get the trivial inequality

EQn [hn(YT )] + γH(Qn|Pn) ≤ γ

δ

(
EQn [hn(YT )] + δEPn [(ZQn)γ ]

1
γ

)
+
(γ
δ
− 1
)
‖h‖,

and hence

f̂(γ, n)− f̂(δ, n) ≤
(γ
δ
− 1
)(

f̂(δ, n) + ‖h‖
)
≤
(γ
δ
− 1
)

(Kδ + 2‖h‖).

As there is no asymptotic arbitrage, i.e. lim supn→∞ unU (x, qn; 0) < U(∞) = 0 and since unU (x, qn; 0) ≥
U(x), there exists some constant M > 0 such that 1

M ≤ −u
n
U (x, qn; 0) ≤M for n sufficiently large.

Now we proceed with the proof for the position size equal to qn and see that the rate at which the position

size increases has to be adjusted to get the desired result.

Let U1, U2 ∈ Up,l and x1, x2 ∈ R. Then

pnU1
(x1, qn;hn)− pnU2

(x2, qn;hn) ≤ x1 + C(ε, U1)− x2 + C(ε, U2)

qn

+ f̂

(
1

qn
δ+(ε, n), n

)
− f̂

(
1

qn
δ−(ε, n), n

)
,
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for

δ+(ε, n) :=
(
l(−unU1

(x1, qn; 0) + ε)
) 1
p (1 + ε)

1
γ

δ−(ε, n) :=
(
l(−unU2

(x2, qn; 0)− ε

2
)
) 1
p

(1− ε)
1
γ .

The first term in above inequality vanishes as qn → ∞ hence can be disregarded. For the difference of

the two f̂(δ, n) terms, we get by above observations that

δ+(ε, n)

δ−(ε, n)
≤ (−M − ε)

1
p (1 + ε)

1
γ(

− ε2 + 1
M

) 1
p (1− ε)

1
γ

→ (−M2)
1
p < 0,

as ε→ 0. Moreover we have that

δ−(ε, n)

qn
→ 0,

as n→∞. It then follows that

lim sup
n→∞

(
pnU1

(x1, qn;hn)− pnU2
(x2, qn;hn)

)
≤ 2‖h‖

 (−M − ε)
1
p (1 + ε)

1
γ(

ε
2 −

1
M

) 1
p (1− ε)

1
γ

− 1

 ,

which does not converge to zero as ε→ 0.

Notwithstanding, under the adjusted rate qn(−unUi(xi, qn; 0))
1
p (hence kn = (−unUi(xi, qn; 0))

1
p ) at which

the position size increases, we get by the very same calculations as above that

pnU1
(x1, qn(−unU1

(x1, qn; 0))
1
p ;hn)− pnU2

(x2, qn(−unU2
(x2, qn; 0))

1
p ;hn)

≤ 1

qn

(
x1 + C(ε, U1)

(−unU1
(x1, qn;h))

1
p

− x2 + C(ε, U2)

(−unU2
(x2, qn;h))

1
p

)
︸ ︷︷ ︸

=:C(ε,n)

+f̂

(
1

qn
δ+(ε, n), n

)
− f̂

(
1

qn
δ−(ε, n), n

)
,

where

δ+(ε, n) :=

(
1− ε

(−unU1
(x1, qn; 0))

) 1
p

l
1
p (1 + ε)

1
γ

δ−(ε, n) :=

(
1 +

ε
2

unU2
(x2, qn; 0)

) 1
p

l
1
p (1 + ε)

1
γ .

We then get that, as ε→ 0,

δ+(ε, n)

δ−(ε, n)
≤ (1 + εM)

1
p (1 + ε)

1
γ(

1− ε
2M

) 1
p (1− ε)

1
γ

→ 1,

as desired and by copying above arguments, we are done. As C(ε, n)q−1
n → 0 for n → ∞, this term has

no impact on the limit. Therefore, we finally have that

lim sup
n→∞

(
pnU1

(x1, qn(−unU1
(x1))

1
p ;hn)− pnU2

(x2, qn(−unU2
(x2))

1
p ;hn)

)
≤ 2‖h‖

(
(1 + εM)

1
p (1 + ε)

1
γ

(1ε/2M)
1
p (1− ε)

1
γ

)
,
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where we used that, for n→∞,

δ−(ε, n)

qn
→ 0.

As the right-hand side is independent of n, we can directly pass to the limit ε → 0 and get the desired

result by interchanging the roles of U1, U2 and x1, x2.

4.3 Pricing in a Stochastic Factor resp. Basis Risk Model

In this section, we present the aforementioned general stochastic factor model and get then the basis risk

model as treated in Chapter 3 as a special case.

4.3.1 Model and Assumptions

We consider the following stochastic factor model, where the assets Snt and volatility Yt satisfy the

following stochastic differential equations (SDE):

dSnt
Snt

= µ(Yt)dt+ σ(Yt)
(
%ndWt +

√
1− %2

ndBt

)
, Sn0 = 1

dY (t) = ν(Yt)dt+ η(Yt)dWt,

where Wt, Bt are independent Brownian motions, %n ∈ [−1, 1] and Sn0 = 1. Moreover, we assume that

hn = h(YT ). Accordingly, each market consists of two risky assets having correlation %n, which is the

only thing that changes with n.

Furthermore, we assume that each of our probability spaces (Ωn, (Fnt )0≤t≤T ,Fn,Pn) is a two-dimensional

Wiener space, where the filtration Fn = (Fnt )0≤t≤T is the Pn-augmented version of the right-continuous

enlargement of the natural filtration Fn,W,B generated by Wt and Bt.

Moreover, for %n = 1, we denote by (Ω, (Ft)0≤t≤T ,F,P) the asymptotically complete limiting market, for

which we assume that it satisfies above conditions as well.

It will be crucial for our study to rely the following assumption:

Assumption 6. For −∞ ≤ l < u ≤ ∞, we set E := (l, u)16. Moreover, we assume ν, η : E → R are

continuous functions and that η2(y) > 0 for y ∈ E. Furthermore, we assume that the above SDE for Yt

admits a strong solution with respect to the P-augmented filtration of Wt with P[Yt ∈ E, 0 ≤ t ≤ T ] = 1.

Moreover µ, σ : E → R are assumed to be measurable such that for y ∈ E : σ2(y) > 0.

We set the Sharpe ratio

λ(y) :=
µ(y)

σ(y)

and assume that λ(y) is a bounded function on E.

Lastly, we assume that h : E 7→ R is a bounded and continuous function and %n ∈ (−1, 1).

Remark 4.3.1. The afore-introduced stochastic factor model is fairly general and by setting E =

(0,∞), µ(y) = µ, σ(y) = σ, ν(y) = νy, η(y) = ηy for some µ, ν ∈ R and σ, η ∈ R+, which gives then

that the traded asset Snt and the nontraded asset Yt follow each a geometric Brownian motion with

correlation %n, we obtain the basis risk model as studied in Chapter 3.

16Usually, the interval E is given by E = R or E = R+.
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Note. Note that Assumption 6 implies Assumption 2 (obvious), 3 and 4. Concerning the implication of

Assumption 3 and Assumption 4, we consider the following measure Q̂n given by

dQ̂n

dPn
:= E

(
−
∫ .

0

%nλ(Yt)dWt −
∫ .

0

√
1− %2

nλ(Yt)dBt

)
T

.

Then under Q̂n, the following processes are two independent Brownian motions

dŴn
t := dWt + %nλ(Yt)dt, dB̂nt := dBt +

√
1− %2

nλ(Yt)dt,

which gives

dSnt
Snt

= µ(Yt)dt+ σ(Yt)
(
%n

(
dŴn

t − %nλ(Yt)dt
)

+
√

1− %2
n

(
dB̂nt −

√
1− %2

nλ(Yt)dt
))

= %ndŴ
n
t +

√
1− %2

ndB̂
n
t .

Hence it follows that Q̂n ∈ M̃n.

For completeness, we record here the Q̂n-dynamics of Yt, that is

dYt =

(
ν(Yt)− %n

η(Yt)µ(Yt)

σ(Yt)

)
dt+ η(Yt)dŴ

n
t ,

where we denote by δ(Yt) its drift.

Moreover

lim sup
n→∞

H(Q̂n|Pn) <∞,

as λ(Yt) and %n are bounded on E and as the time horizon T is finite. Hence Assumption 3 is satisfied.

For Assumption 4, note that for fixed γ = p
p−1 > 1 with p > 1, we have

EPn
[(

dQ̂n

dPn

)γ]
≤ exp

(
γT sup

y∈E
λ2(y)

)
<∞,

due to the same reasons as above. Hence Assumption 4 is satisfied, too and a no nirvana discussion is

redundant.

Proposition 4.3.1. ([Teh04, Proposition 3.3]) Under Assumption 6, we have that the value function

unUα(x, qn;h) for the canonical exponential utility Uα ∈ Uα admits the representation

unUα(x, qn;h) = − 1

α
exp(−αx)EPn

[
Z(%n) exp

(
−(1− %2

n)

(
αqnh(YT ) +

1

2

∫ T

0

λ(Yt)
2dt

))] 1
1−%2n

,

for

Z(%n) := E
(
−%n

∫ .

0

λ(Yt)dWt

)
T

; Z := Z(1)

being the projection of Q̂n on the filtration generated by Wt.

Proof. For a detailed proof, we refer to [Teh04, Proposition 3.3].

Note. Clearly, Z has all exponential moments, as λ(y) is assumed to be bounded and T being finite.
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Moreover

Z(%n) exp(−(1− %2
n)Λ) = Z(1)%n exp(−(1− %n)Λ),

for the mean-variance trade-off process

Λ =
1

2

∫ T

0

λ(Yt)
2dt.

Assuming that the taken position size qn is of the form of qn = γn
α(1−%2n) for some γn,17 we get by (3.2.11)

and by above representation

pnUα(x, qn;h) = − 1

qnα
log

(
unUα(0, qn;h)

unUα(0, qn; 0)

)
(4.3.1)

= − 1

γn
log

EPn [Z%n exp(−(1− %n)Λ− γnh(YT ))]

EPn [Z%n exp(−(1− %n)Λ)]︸ ︷︷ ︸
=:f(%n,γn)

 .

Obviously, the study of f(%n, γn) will play a crucial role in the following analysis. Moreover, f(%n, γn) is

smooth, as we can interchange limits and integrals due to the boundedness of λ(y) and thus of Λ, h and

the existing exponential moments of Z. Hence the derivative of f(%n, γn) can be computed by simply

interchanging integral and differential operator. Lastly, we note that for g(%n, γn) given by

(4.3.2) g(%, γ) :=
EPn [h(YT )Z(%) exp(−(1− %2)Λ− γh(YT )]

EPn [Z(%) exp(−(1− %2)Λ− γh(YT )]
,

we have that

g(%, γ) = −∂γ log(f(%, γ)).

The following Lemma gives helpful properties on g(%n, γn), which will be needed later. It is a consequence

on Esscher transformation.

Lemma 4.3.1. ([Rob13, Lemma 7.1]) Suppose Assumption 6 holds. For %, γ ∈ R, we have:

i) For % fixed, g(%, γ) is strictly decreasing in γ with limγ→−∞ g(%, γ) = supy∈E h(y) and limγ→∞ g(%, γ) =

infy∈E h(y).

ii) For p ∈ I ′(h) := [infy∈E h(y), supy∈E h(y)] and % ∈ R, there exists a unique γ = γ(%) such that

p = g(%, γ(%)) and the map % 7→ γ(%) belongs to C1(R).

Proof. We show i) for γ →∞ :

Define a new probability measure by the following Esscher transform

dP̃n

dPn
:=

Z% exp(−(1− %)Λ− γh(YT ))

EPn [Z% exp(−(1− %)Λ− γh(YT ))]
.

We then get that

∂γg(%, γ) = EP̃n [h(YT )]2 − EP̃n [h(YT )2] = −VarP̃
n

[h(YT )] < 0,

17Later, we will see that this assumption on the representation of qn is legitimated.
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hence g is strictly decreasing. Setting h := essinfP[h(YT )] = infy∈E h(y) (we haven’t seen this equality

yet, see later in the note after Theorem 4.3.1 for details and verification) gives that g(%, γ) ≥ h.

Choose m > 0 such that P[h(YT )− h < m] > 0 as well as P[h(YT )− h ≥ m] > 0. This gives

g(%, γ) = h+
EPn [(h(YT )− h)Z% exp(−(1− %)Λ− γ(h(YT )− (h+m)))]

EPn [Z% exp(−(1− %)Λ− γ(h(YT )− (h+m)))]

≤ h+m+
K

EPn [Z% exp(−(1− %)Λ− γ(h(YT )− (h+m)))1h(YT )<h+m]
,

for γ > 0 and K large enough. Fatou’s Lemma implies that

lim sup
γ→∞

g(%, γ) ≤ h+m.

Letting m tend to 0 yields the desired result. The case for γ → −∞ follows in a similar way.

For ii), we note that part i) gives the existence of a unique γ(%) such that for all p ∈ I ′(h), we have:

p = g(%, γ(%)). The result now follows from the Implicit Function Theorem by the smoothness of g(%γ)

and by ∂γg(%, γ) 6= 0.

4.3.2 Pricing in the Large Claim Limit

Recalling the definition of the large claim limit from Section 4.2.1, we finally investigate the value function

in the joint limit of qn → ∞ and %n → 1 and the respective pricing results. We shall establish this for

U ∈ Uα.

It turns out in the sequel that it is convenient to express the position size qn in terms of the correlation

%n and the risk aversion parameter α and an exogenous factor γn. Hence following representation is (for

the moment being) legitimated and not artificially forced.

(4.3.3) qn =
γn

α(1− %2
n)

for some γn, where


(i) γn → 0 but γn

1−%2n
→∞.

(ii) γn → γ > 0.

(iii) γn →∞.

Accordingly, γn can be seen as an exogenous parameter describing the relationship between the hedging

error and the position size. Choosing qn in this way for some α, γn, %n, we fall directly into regime of

(4.0.1) if γn → γ, as we can identify for each fixed n

qn︸︷︷︸
position size

×
risk aversion︷︸︸︷

α × (1− %2
n)︸ ︷︷ ︸

hedging error

=

const.︷︸︸︷
γn .

But notice that we did not verify this relationship yet - this is exactly our goal now.

For this, we define in the limiting market a new probability measure Q ∼ P by setting

dQ
dP

:= Z(1) = Z.

Note. Q is the unique martingale measure in the complete model, as seen in Chapter 3.

The next theorem is our main theorem and gives us explicit large claim limiting prices for the three

different regimes.
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Theorem 4.3.1. ([Rob13, Proposition 5.3]) Let α > 0, U ∈ Uα and x ∈ R. Suppose Assumption 6 holds.

Then the average utility indifference price for the three regimes in (4.3.3) is given in the limit by

lim
n→∞

pnU (x, qn;h) = pα :=


(i) EQ[h(YT )]

(ii) − 1
γ logEQ[exp(−γh(YT ))]

(iii) essinfP[h(YT )] = infy∈E h(y).

Remark 4.3.2.

� Notice that the equality in (iii) holds due to the continuity of h and P[YT ∈ (l′, u′)] > 0 for any

(l′, u′) ∈ E. As we will see later in the proof of above theorem, the result for (iii) holds also when

%n ≡ % and γn →∞, i.e. in a constant kept market when only position size are allowed to vary. But

we have seen in Theorem 4.2.3 that in such a setting, prices converge to the minimal arbitrage-free

price. Therefore Theorem 4.2.3 together with Theorem 4.3.1 imply that for each n

inf
Qn∈Mn

EQn [h(YT )] = inf
y∈E

h(y).

and hence the interval I(h) of arbitrage-free prices coincides with I ′(h).

� We recall that in Theorem 4.2.3 we have seen the large position effect for the very first time,

that was

lim
n→∞

pU (x, qn;h) = inf
Q∈M

EQ [h(YT )] .

Above theorem extends the large position effect to a framework, where the markets are also allowed

to vary and gives even preciser limiting results depending on the exogenous factor γn.

� For a fixed absolute risk aversion α > 0, and assuming γn → 0, meaning that if, roughly speaking,

position size× hedging error ≈ 0,

then we recover in the limit the arbitrage-free price under the martingale measure from the complete

model, as seen in Chapter 3. Hence this regime can be treated as the small claim limit.

Heuristically, this can be justified by noticing that as the position size increases, hedging errors

become overproportional small, hence almost negligible and the investor acts in an nearly complete

model where she is willing to pay the arbitrage-free Black-Scholes price. Accordingly, this overpro-

portional behavior cancels out all incompleteness in the limiting price.

On the other hand, if γn → γ 6= 0, we have that

position size× hedging error ≈ const ≈ γ,

and a slightly modified version of the arbitrage-free price turns up. Therefore exactly in this regime,

the large claim limit arises endogenously. In fact, the limiting price is given by the canonical

exponential utility indifference price.

The reasoning for this can be given as follows: On each fixed market, we have that the hedging error

is not negligible and behaves (up to constants) inversely/proportional to the current position size.

Hence the investor is not anymore able to remove the incompleteness by just increasing her position
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size. This substantial incompleteness procreates and has a significant impact on the limiting price.

Moreover, the resulting limiting price coincides with the price an investor would pay having the

canonical exponential utility Uα ∈ Uα.

Lastly, if γn → ∞, then by varying the markets, the inverse relationship between ’hedging error’

and ’position size’ becomes adjusted and interrupted by a constant γn growing to infinity, meaning

that
position size

γn
≈ 1

hedging error
.

Hence, as γn →∞, the position size has to grow much faster in order to get a lower hedging error.

This overproportionality gives us a somehow extreme price, the superreplication price. In other

words: Hedging errors procreate and pose an overall large risk. Accordingly, investors are only

willing to pay the lowest arbitrage-free price.

Let’s turn our attention to the proof of this powerful theorem.

Proof. The idea is to study f(%n, γn) in the three regimes. Doing this, we’ll apply Taylor expansion for

the first two cases and for the third case, we’ll apply a convergence argument.

Recall the representation of pnUα(x, qn;hn) and f(%n, γn) in (4.3.1).

We consider case (i): Taylor expansion around (%n, 0) gives

f(%n, γn) = 1 + γn ∂γf(%n, 0)︸ ︷︷ ︸
|.|≤supy∈E |h(y)|

+
1

2
γ2
n ∂2

γγf(%n, ξn)︸ ︷︷ ︸
|.|≤supy∈E |h(y)|2

for some 0 ≤ ξn ≤ γn,

as ∂γ log(f(%, γ)) =
∂γf(%,γ)
f(%,γ) and f(%, γ) < 1 implying |∂γf(%, γ)| ≤ |g(%, γ)| ≤ supy∈E |h(y)|. Similar

calculations give |∂2
γγf(%n, ξn)| ≤ supy∈E |h(y)|2. This implies

lim
n→∞

pnUα(x, qn;h) = lim
n→∞

− 1

γn
log(f(%n, γn))

= lim
n→∞

− 1

γn

(
γn∂γf(%n, 0) +

1

2
γ2
n∂

2
γγf(%n, ξn)

)
= −∂γf(1, 0) = EP[Zh(YT )],

where we used log(1 + x) ≈ x for small x and the continuity of ∂γf(%n, γn).

The case (ii) is handeled analogously with Taylor expansion around (%n, γ).

f(%n, γn) = f(%n, γ) + (γn − γ)∂γf(%n, γ) +
1

2
(γn − γ)2∂2

γγf(%n, ξn) for some 0 ≤ ξn ≤ γn,

giving

lim
n→∞

pnUα(x, qn;h) = − 1

γ
log (f(1, γ)) = − 1

γ
log
(
EQ[exp(−γh(YT ))]

)
.

Finally for case (iii), we set h := essinfP[h(YT )]. Then clearly lim infn→∞ pnUα(x, qn;h) ≥ h. Let m > h

such that P[h(YT ) < m] > 0, then

EP [Z%n exp ((1− %n)Λ− γnh(YT ))] ≥ e−γnmEP [Z%n exp (−(1− %n)Λ) 1h(YT )<m

]
.

This implies that

lim sup
n→∞

pnUα(x, qn;h) ≤ m.
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The result finally follows by letting m→ h.

4.3.3 Determining Optimal Quantities

In this section, we want to verify the heuristic equation (4.0.1), meaning that we want to study whether

our assumption on the form of qn = γn
α(1−%2n) was reasonable.

We have seen that the interval I(h) of arbitrage-free prices for h(YT ) is given by

I(h) =

[
inf

Qn∈Mn
EQn [h(YT )], sup

Qn∈Mn

EQn [h(YT )]

]
=

[
inf
y∈E

h(y), sup
y∈E

h(y)

]
Fix n ∈ N, let pn ∈ I(h) and assume that an investor can buy an arbitrary number of claims for this

fixed price pn, meaning that there is enough liquidity in the market.

Note. Notice that at this point, it is not yet clear, from where this liquidity comes from.

Question. A natural problem that arises is to determine the utility based optimal quantity 18:

(4.3.4) qn ∈ argmaxq∈Ru
n
Uα(x− qpn, q;h).

The following theorem gives us an answer to this problem and even justifies the relation from (4.0.1).

Theorem 4.3.2. ([Rob13, Proposition 5.5]) Let Assumption 6 hold and let pn ∈ I(h). Then the unique

qn solving (4.3.4) satisfies

αqn(1− %2
n) = γn,

where γn is uniquely determined by pn = g(%n, γn).

If %n → 1, then for any subsequence {nk}k∈N, we have

lim
k→∞

|qnk | =∞ ⇐⇒ lim
k→∞

|pnk − p̂|
1− %2

nk

=∞,(4.3.5)

where p̂ := EP[Z(1)h(YT )] = EQ[h(YT )] is the unique arbitrage-free price in the complete market.

Moreover, if we have the convergence of pn → p for some arbitrage-free price p ∈ I(h), then

lim
n→∞

αqn(1− %2
n) = γ,

where γ uniquely solves p = g(1, γ).

Lastly,

γ 6= 0 ⇐⇒ p 6= p̂.

Remark 4.3.3.

� Theorem 4.3.2 essentially states that when an investor purchases optimal quantities (in the sense of

(4.3.4)), the third regime given by case (iii) in (4.3.3) will never appear. Case (i) arises if pn → p̂,

where p̂ = g(1, 0) is the unique arbitrage-free price in the complete market. Else, case (ii) arises

and pn → p ∈ I(h), where p = g(1, γ) for γ 6= 0.

18For exponential utility functions, existence of a unique maximizer qn is proven in a general framework.
For further details, see [IJS05, Theorem 3.1].
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� Furthermore (4.3.5) gives us a necessary and sufficient condition for the appearance of the large

claim limit, given hedging errors become negligible. It states that qn → ∞ if and only if the

deviance of the average utility indifference price with respect to the Black-Scholes price rescaled

by the hedging error explodes. In regime (i), we have that pn → p̂, hence large claims do not

appear, unless the markets become overproportionally complete and then investors take profit from

the arbitrage opportunity. Obviously, in regime (ii) and (iii), large claims arise.

� Moreover, Theorem 4.3.2 gives a reasoning of the heuristic relationship derived in (4.0.1): for a

price pn ∈ I(h), we have that the utility based optimal quantity qn has the form of

qn =
γn

α(1− %2
n)
,

where γn is uniquely given by pn = g(%n, γn). However, we have never addressed the question of

finding a counterpart for becoming optimally positioned, especially for prices pn 6= p̂.

Proof. [IJS05, Theorem 3.1] and also heuristic arguments gives that the optimal qn must satisfy the

following first order condition

g(%n, γn) = pn
!
= −∂q log

((
unUα(0, qn;h)

unUα(0, qn; 0)

)1−%2)
= g(%n, αqn(1− %2

n)),

where we use the definition of g(%, γ) for the third equality and Lemma 4.3.1 in the first equality for the

existence of a unique γn, hence

γn = αqn(1− %2
n).

Let %n → 1 and assume that supn
|pn−p̂|
1−%2n

< ∞. Then again by Lemma 4.3.1, we get that γn → 0 and

hence by Taylor expansion

|pn − p̂|
1− %2

n

=
g(%n, γn)− g(1, 0)

1− %2
n

≈ − 1

1 + %n
∂%g(1, 0) +

γn
1− %2

n

∂γg(1, 0).

From this we get the claimed equivalence. Finally, assume that pn → p 6= p̂. Then by continuity, we have

that γn → γ where γ satisfies p = g(1, γ). Finally we have that γ 6= 0 ⇐⇒ p 6= p̂ by Lemma 4.3.1.

4.3.3.1 Finding a Counterparty for Becoming Optimal Positioned

Question. How is it possible to find a buyer/seller at a price pn ≈ pα 6= p̂, i.e. at a price which is not

equal to the arbitrage-free price?

A way to try to explain this phenomenon is to introduce so-called partial-equilibrium price quantities. A

very good reference on which also the following investigations are based is given by [AŽ10].

Definition 4.3.1. A pair (qn, pn), where pn ∈ I(h) and qn ∈ R \ {0} is called a partial-equilibrium

price quantity (short: PEPQ) in the nth market if

1. qn ∈ argmaxq∈R (eαqnpnunα(qn;h,X)) and

2. −qn ∈ argmaxq∈R
(
eδqnpnunδ (qn;h,X ′)

)
,

where

unα(qn;h;X) := unUα

(
0, qn;h+

X

qn

)
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is the value function for holding qn units of h(YT ) and one unit of the bounded T-claim X. X ′ is another

bounded T-claim.

A price pn ∈ I(h) is called partial-equilibrium price in the nth market (short: PEP) if there exists

qn such that (qn, pn) is a PEPQ.

In other words: (qn, pn) is a PEPQ if, for the price pn, it is optimal for the δ-risk averse investor to sell

qn units of h(YT ) and for the α-risk averse investor to buy qn units of h(YT ). A general result is that

if αX − δX ′ is not replicable, then there exists a unique PEPQ (qn, pn), otherwise there is no PEPQ

([AŽ10, Theorem 5.8]).

The name has its origin as, in a two-agents economy, the agents can not only agree on the price but also

upon the quantity of their transaction meaning that given a certain endogenous and arbitrage-free price

pn ∈ I(h), the agents enter into a partial-equilibrium (and thus the trade will occur) if they can agree

on the volume of their trade (i.e. if they find a quantity qn such that the transaction is optimal for both

parties). The equilibrium is only partial as the two agents are temporarily in an equilibrium and the

whole market does not have to be in balance. [AŽ10, Section 5]

Returning to the verification of (4.0.1): Assume that X ≡ 0 and that we have a two-agents economy

with, say, a seller (δ risk averse) and a buyer (α risk averse) 19. Moreover assume that the seller holds

a position of qn units of h(YT ). Then this can be expressed in terms of (4.3.3) meaning that we find γn

such that

X ′ = qnh(YT ) =
γn

δ(1− %2
n)
h(YT ) for some γn > 0.(4.3.6)

As h(YT ) is not replicable due to incompleteness, it follows that there exists a PEPQ (q̂n, pn) for the

price pn which satisfies the optimality conditions for q̂n :=
γ′n

(1−%2n) :

pn = g(%n, αγ
′
n) = g(%n, γn − δγ′n).

Indeed, the first equality comes from the fact that the unique q̂n solving the optimization problem is

given by

pn = g(%n, γ
′′
n),

for q̂n =
γ′′n

α(1−%2n) .

The second equality is due to the same reason, with a small adjustment, namely that the seller with risk

aversion δ chooses the quantity she wants to sell for the price pn 6= p̂ such that the remaining quantity

held, which is

q̃n =
γn

δ(1− %2
n)
− q̂n =

γn − δγ′n
δ(1− %2

n)
,

becomes optimal in the sense, that above q̃n satisfies (4.3.4) which gives

pn = g(%n, γn − δγ′n).

We have therefore that

γ′n =
γn
α+ δ

,

19We call the two agents a priori ’seller’ and ’buyer’. To be more precise, the situation is as follows: One of the agents
possesses a number of claims h and tries to sell them. Given that there is an endogenous price pn determined by the market
environment, the two agents close their deal if and only if they can agree on the quantity qn such that (pn, qn) is a PEPQ.
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which gives us in conclusion that the two agents have agreed on the quantity

q̂n =
γ′n

(1− %2
n)

=
γn

(1− %2
n)(α+ δ)

of the claim h for the price pn, which is given by the representation

pn = g

(
%n,

αγn
(α+ δ)

)
.

As %n → 1, we have that pn → p ∈ I(h), where

p = g

(
1,

αγ

(α+ δ)

)
,

for γn → γ. Depending on the value of γ, we have that p = p̂ if γ = 0 and p 6= p̂ if γ > 0.

Clearly, the buyer enters into the regime of (4.0.1), as

q̂n × (1− %2
n)× α =

γnα

(α+ δ)
≈ const for the n-th market.

Summing up: given that the seller was already in regime of (4.0.1), which we assumed in (4.3.6), acting

optimally, the buyer directly enters into the regime of (4.0.1) as well.

The message is that as long as there exists a single investor in the regime of (4.0.1), independent of the

optimality of entering into this regime, it is possible for other investors to enter into the regime of (4.0.1)

in an optimal way.

Given the fact that we have huge actual notional sizes, we may assume that there is always an investor

in the regime of (4.0.1) and each other agent interacting or trading respectively with this investor enters

into the regime of (4.0.1).

4.3.4 Monetary Errors

As we have seen in Theorem 4.2.2, the monetary error induced by the difference of utility indifference

prices for utilities from the same exponential class remains bounded in the limit. Additionally, one might

be interested if this is still true when we directly use the limiting price. Generally, this is not the case.

Indeed, we have the following theorem:

Theorem 4.3.3. ([Rob13, Proposition 5.7]) Let α > 0 and let Assumption 6 hold. Then for qn given by

(4.3.3) and pα from Theorem 4.3.1, we have that, as %n → 1

lim sup
n→∞

qn|pnUα(x, qn;h)− pα| <∞ ⇐⇒


(i) lim sup

n→∞

γ2
n

(1−%2n) <∞

(ii) lim sup
n→∞

|γ−γn|
(1−%2n) <∞.

Note that for simplification, we omit case (iii).

Moreover, if γn is chosen optimally as in Theorem 4.3.2 for a fixed p ∈ I(h) meaning that γn satisfies

p = g(%n, γn), then monetary errors are always bounded.
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Proof. We introduce the monetary error in the nth market

MEn := qn|pnUα(x,qn;h) − pα| =
γn

α(1− %2
n)

∣∣∣∣− 1

γn
log(f(%n, γn))− pα

∣∣∣∣ ,
for f(%n, γn) defined in (4.3.1) and qn = γn

α(1−%2n) . To estimate MEn, it is therefore necessary to approxi-

mate log(f(%n, γn)) using Taylor expansion around log(f(1, γ)).

As 1−%n
1−%2n

≤ 1, we have that the terms derived by partial derivatives with respect to % remain bounded.

Hence the only terms contributing to the finiteness of MEn are log(f(1, γ)), ∂γ log(f(1, γ)), ∂2
γγ log(f(1, γ)).

Therefore we may consider the following approximation

log(f(%n, γn)) ≈ log(f(1, γ)) + (γn − γ)
∂γf

f
(1, γ) +

1

2
(γn − γ)2

∂2
γγf

f
−
(
∂γf

f

)2

︸ ︷︷ ︸
−∂γg

 (1, γ) ,

where g(%n, γn) was defined in (4.3.2).

For case (i), we have pα = −∂γ log(f(1, 0)) = EQ[h(YT )] and γ = 0, hence above approximation yields

MEn =
γn

α(1− %2
n)

∣∣∣∣12γn (∂2
γγf − (∂γf)2

)
(1, 0)

∣∣∣∣ ,
which gives the desired result. For case (ii), we have that pα = − 1

γ log(f(1, γ)) and γ 6= 0 which gives us

MEn =
|γn − γ|
α(1− %2

n)

∣∣∣∣∣∂γff (1, γ) +
1

2
(γn − γ)

(
∂2
γγf

f
−
(
∂γf

f

)2
)

(1, γ)

∣∣∣∣∣ ,
which indicates the equivalence for case (ii).

For the last statement, let p ∈ I(h) and assume γn is chosen optimally as in Theorem 4.3.2. If p = p̂,

then by Theorem 4.3.2 we have that supn |qn| < ∞, hence the assertion follows. Else, if p 6= p̂, then

again by Theorem 4.3.2, we have that γn → γ 6= 0 where p = g(1, γ). Hence we are in regime (ii) and the

monetary error is finite if and only if supn
|γn−γ|
(1−%2n) <∞. Hence for ε > 0

sup
n

|γn − γ|
(1− %2

n)
=
|γ(%n)− γ(1)|

(1− %2
n)

=
1

1 + %n

1

1− %n

∣∣∣∣∫ 1

%n

γ′(τ)dτ

∣∣∣∣ ≤ |γ′(1)|+ ε

2
<∞,

where we used the fact that the map % 7→ γ(%) belongs to C1(R).

4.3.5 Algorithm for Finding the Optimal Quantity q?

Above discussion gives us an algorithm for finding the optimal quantity q?.

Assume, that the claim h(YT ) can be purchased for a price p where we assume that p ∈ I(h) and further

assume a fixed and known % (in practice, this can be estimated by the use of statistical methods). Note,

that this does not imply that we know the regime in which the agent is acting (under the assumption

of optimal acting, both regime (i) and regime (ii) are possible), as we do not have to know this for

determining optimal quantities.

Then Lemma 4.3.1 (ii) gives us the existence of a γ(%) such that p = g(%, γ(%)). Together with Theorem

4.3.2, we have the optimality property of γ(%) and moreover we know that γ(%) satisfies γ(%) = αq?(1−%2).
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Hence we just have to solve

p = g(%, γ(%))

for γ(%), i.e.

p =
EP[h(YT )Z% exp(−(1− %)Λ− γ(%)h(YT ))]

EP[Z% exp(−(1− %)Λ− γ(%)h(YT ))]
.

Define a new probability measure Q% by

dQ%

dP
= Z(%) = E

(
−%
∫ ·

0

λ(Yt)dWt

)
T

.

Then above condition on γ(%) reduces to

p =
EQ% [h(YT ) exp(−(1− %2)Λ− γ(%)h(YT ))]

EQ% [exp(−(1− %2)Λ− γ(%)h(YT ))]
.(4.3.7)

Hence, finding a solution in (4.3.7) requires to follow the following algorithm: Start with two initial values

for γ, γlow and γhigh, say. As the right-hand side in (4.3.7) is monotonic in γ, we can apply a nesting

procedure.

Algorithm 1 Algorithm for determining q? and pU (x, q?;h)

Given data: p ∈ I(h), γlow, γhigh, Tol

1: γtemp,low ← γlow

2: γtemp,high ← γhigh

3: Error ← 2Tol

4: while Error > Tol do

5: γtemp ← 1
2 (γtemp,high + γtemp,low)

6: ptemp ← g(%, γtemp)

7: if ptemp > p then

8: γtemp,low ← γtemp

9: else

10: γtemp,high ← γtemp

11: end if

12: Error ← |ptemp − p|
13: end while

14: q? ← γtemp

α(1−%2)

15: pU (x, q?;h) ← − 1
γtemp

log(f(%, γtemp))

Algorithm 1 gives us the bifurcation procedure of finding the optimal position size q? given a given market

price of p ∈ I(h). Moreover, we can then calculate the utility indifference price pU (x, q?;h) for which

the agent is indifferent between holding q? claims of h(YT ) or not. Depending on the order of p and

pU (x, q?;h), i.e. p < pU (x, q?;h) resp. p > pU (x, q?;h) the agent will take in a long resp. short position.
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4.4 Example

We end up this chapter by giving a concrete example. Part of our investigation is based on the

Mathematica code published by S. Robertson on his homepage, see [Rob]. In what follows, we assume

that the agent’s utility function is given by the canonical exponential utility function Uα = − 1
αe
−αx for

some absolute risk aversion α > 0 and that we are in the setting the basis risk model, hence Snt and Yt

are given by two (correlated) geometric Brownian motions.

A big drawback of this approach is that we are not able to price standard Call options. Hence we turn

our attention directly to Put options.

4.4.1 Put Option

4.4.1.1 Finding the Optimal Quantity

We let h(YT ) = (K−YT )+. Of course, Assumption 6 is satisfied, as Yt is driven by a geometric Brownian

motion and thus non-negative.

Parameters - We choose the following parameters:

K = 20, T = 1, t = 0 ν = 0.05, µ = 0.06, η = 0.3, σ = 0.4, Y0 = 15, α = 3, p = 5

With this parameters and following Algorithm 1, we produced the following plots. Note that in a first

step, we solved p = g(%, γ(%)) for γ(%) and by this we can then calculate the optimal position size q? and

the average utility indifference price pUα(x, qn;h).

(a) Change of optimal position size when %→ ±1. (b) Change of the price when %→ ±1.

Figure 4.4.1: Price and position dynamics when %→ ±1 for a Put option with strike K = 20, Y0 = 15.

Figure 4.4.1 shows that under these specific parameters and with an a priori fixed market price of p = 5

per unit of h(YT ), then whenever the optimal position size is positive, we have that the respective average

utility indifference price is larger than the market price. On the other hand side, if the optimal quantity

is negative, we have that pUα(x, q;h) ≤ 5.

This is nothing else than what we should have expected: As long as a specific agent is in a market (by

this we specify %) where it is optimal to take a long position in the claim, it has to hold for sure that

the average utility indifference price is larger than the price for which she is taking a long position as the
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long position indicates an increase of her expected utility at time T . In contrast to that, if it is optimal

to shorten the claim h(YT ), her utility indifference price has to be smaller than this price.

We want to point out that as % → 1, we see that pUα(x, q;h) → p ≈ 5.2 6= p̂ ≈ 5.4053, where p̂ is the

arbitrage-free Black-Scholes price. This means that we are either in regime (ii) or (iii) (as if we were in

regime (i), we would see the arbitrage-free price). But we have seen in Remark 4.3.3 that regime (iii)

won’t appear if we purchase optimal quantities. Hence we are for sure in regime (ii). By this (referring

to Remark 4.3.2), we find that hedging errors are not negligible and are (up to a constant) inverse to the

current position size. Moreover, the position size increases to ±∞ as % → ±1. This is of course due to

the fact that p 6= p̂ as we are in regime (ii) and the agent profits from the arbitrage opportunity. Here we

see also, that the large claim limit arises endogenously when letting the markets converge to a limiting

market and the resulting price is not equal to the arbitrage-free Black-Scholes price.

We have also given reasons how one could engage a seller/buyer for a price pUα ≈ p 6= p̂ using the notion

of partial equilibrium price quantities.

It should be clear that all these investigations highly depend on the market price p = 5 as the agent

aligns her position size according to the market price.

4.4.1.2 Pricing

In the sequel, we want to investigate the pricing behavior of the Put option in the given framework. For

completeness, we record again the chosen parameter:

Parameters - We choose the following parameters:

T = 1, t = 0 ν = 0.05, µ = 0.06, η = 0.3, σ = 0.4, , α = 3, γ = 0.2 (i.e. q ≈ 0.1851), % = 0.8

Figure 4.4.2 shows on the left the shape of the price dynamics of a Put option (long position) with a

fixed strike of K = 20 where we included (dotted line) the payoff profile of the Put option at time T . By

naked eyes, we see that the average utility indifference prices differ significantly from the Black-Scholes

prices. The reason originates from the large position effect, i.e. the power of a large investor (here even

q = 0.1851 is enough (!)) being able to push prices down. On the right-hand side we provide the dynam-

ics of the price with respect to the strike K which is what we should have expected and already seen in

Chapter 3.

4.4.1.3 Pricing Error and Large Position Effect

We turn our attention to the pricing deviation: Figure 4.4.3 shows the pricing error resulted from pricing

with the arbitrage-free Black-Scholes price instead of pricing with the true parameters % and q resp. γ

and the respective average utility indifference price pU (x, q;h) in the actually incomplete market.

We want to direct the attention to the fact that as γ → 0, we recover the small claim limit, prices converge

to the Black-Scholes price and the resulting error vanishes. But already for γ = 0.2, the deviation from

Black-Scholes price is significant as seen in the last section.

In contrast to that, we plotted in Figure 4.4.4 the pricing error with respect to the limiting price from

regime (ii) (we have set γ = 20). Of course as γ → 20, the pricing deviation vanishes.
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(a) Price dynamics with respect to Y0. (b) Price dynamics with respect to K.

Figure 4.4.2: Different price dynamics for Put option.

But we want to point out that the deviation is way smaller in regime (ii) than in regime (i). The reason

for this lies in the fact that the limiting price pα from regime (ii) takes into account the large position

effect, while Black-Scholes does not.

In summary, it can therefore be concluded that as soon as we are dealing with positive position sizes, the

resulting pricing error when pricing with the limiting price from regime (ii) instead of the actual average

utility indifference price is very small (even almost negligible).

This is a great insight - investors should always take − 1
γ log(f(%, γ)) as a reference price.

Figure 4.4.3: Plot of pricing error for a Put option in regime (i).

Lastly, we provide in Figure 4.4.5 an illustration of how fast the large position effect comes into play.

Also here we see that for our initial choice of γ = 0.2, the deviation is already very significant.
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Figure 4.4.4: Plot of pricing error for a Put option in regime (ii).

Figure 4.4.5: Large position effect for a Put option.

4.5 Conclusion

Based on [Rob13] by Scott Robertson, the utility indifference pricing problem is studied in the large claim

limit, meaning that working on a sequence of markets, the position size, the claim as well as the markets

are allowed to vary under some suitable assumptions. It is crucial to allow the markets to vary to get a

deeper understanding of the effect of large positions on average utility indifference prices.

We have presented in a first step some convergence results for exponential and power law utilities sup-

porting wealths on the real line. Surprisingly, the individual utility function has no impact on the limiting

price but rather the rate of decay for large negative wealths has an impact on the price. We have shown

that price differences will vanish in the limit for utilities belonging to the same (exponential) class. Hence,

one could directly work with the canonical example for pricing purposes. The same holds true for utilities

with a power-like decay for large negative wealths with a slight adjustment in the speed at which the

position size grows to infinity.
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In the case of a constant-kept market where only the position size is allowed to vary, average utility

indifference prices converge to the minimal arbitrage-free price, i.e. the superreplication price. This is of

course unsatisfactory and that is the reason why one allows also the markets to vary.

We have also seen that the price per unit for q units of the claim which an investor having exponential

utility with parameter α would pay coincides with the price an agent having exponential utility with

parameter qα would pay for one unit of the claim. By this we than also found that the limit as risk

aversion goes to infinity of the average utility indifference price is also given by the lowest arbitrage-free

price.

Additionally, we have studied extensively a stochastic factor model, from which we could apply the results

to the basis risk model. We then distinguished between different drivers resp. regimes for the position

size qn to grow. Given the distinction of the drivers, limiting prices are established and give surprisingly

different results, which are not necessarily equal to the arbitrage-free price from the complete model,

although the sequence of markets is assumed to converge to a market with vanishing hedging error,

hence asymptotically complete. This was a generalization to the afore-mentioned limiting price under in

constant kept market. Roughly speaking, depending on the speed of becoming complete with respect to

the rate of position growth, the limiting price becomes equal to either (i) the arbitrage-free Black-Scholes

price, or (ii) the lowest arbitrage-free price or (iii) a price which is somehow in between of the previous

extreme prices. It turns out that this price coincides with the price an exponential utility investor would

pay.

As a consequence, we then have concluded that the large claim limit arises endogenously in regime (ii),

while in regime (i), the investor would not hold a large claim (it can even be compared with the small

claim limit) and in regime (iii) she will hold a large claim but only for the lowest possible price.

Of course, it is crucial to understand how one can find a seller/buyer for a price which is not equal to the

arbitrage-free price from the complete model. This was the last question which we addressed and which

is handled by the use of partial equilibrium price quantities - a tool from economics which gives a way

of studying partial equilibria in simultaneously prices and quantities and does not pay attention to other

factors/markets.

In the analysis, one finds that, given an investor is in the regime of (4.0.1), each additional agent inter-

acting optimally with this specific investor enters directly into this regime. The reasoning for this was

given by the fact that, nowadays, we have huge notional sizes. Of course this assertion is quite bold.

We ended the Chapter with numerical investigation of a concrete example. We gained great insight in

the deviation of the respective limiting price. Namely, as long as we are dealing with positive positions,

the deviation to the limiting price of regime (ii) is way smaller than the error to Black-Scholes prices.

A drawback of the approach is that only (uniformly) bounded claims can be priced in this framework.
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Chapter 5

Comparison of the Two Approaches,

Conclusion

In this chapter, we shall compare the two approaches given in Chapter 3 and Chapter 4. Let us start by

a short overview on the approaches.

5.1 Approaches

The main difference between Chapter 3 and Chapter 4 is, as the name states, that they tackle the problem

of finding the value function from two very different point of views. Recalling the initial goal of examining

the value function uU (x, q;h) in the basis risk model, we studied in Chapter 3 the value function uU (x, q;h)

(and by this the average utility indifference price pU (x, q;h)) in the limit when the position size tends to

zero, i.e. in the small claim limit. Surprisingly, we found than the optimal strategy differs barely from

the optimal strategy from the complete model - the only difference lies in the magnitude of a Delta hedge

term. By this, also prices are similar to the Black-Scholes prices. We have seen an expansion of the

average utility indifference price up to order q whose first term coincides with the Black-Scholes term.

Our numerical investigations showed that the second order term is negligible for small position sizes, at

least in our treated examples. We proved and examined the small claim limit under power law utility

and also presented results in the case of exponential utility.

In contrast to that, we studied in Chapter 4 the value function in the large claim limit by considering

a sequence of markets (Ωn, (Fnt )0≤t≤T ,Fn,Pn) where in each market we have a basis risk model. The

correlation %n and the position size qn are allowed to vary with the constraints that qn →∞ and %n → 1.

We have seen reasons for allowing the markets to vary.

We then have shown that as the number of claims is growing to infinity, the individual utility function

plays no role for the resulting price but more the rate of decay for large negative wealths and the limiting

price coincides with the limiting price of an investor with an exponential utility function with this specific

rate of decay.

In one of our main results, we found explicit formulae for the average utility indifference price in the limit

in three different regimes which differ by the speed of qn growing to infinity. Furthermore, we have also

provided cases, where the large claim limit arises endogenously.
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5.2 Results

We have established several examples to highlight our investigations in Chapter 3 and Chapter 4. These

examples have not produced any big surprises - we could describe the outcome using the afore-developed

theory. But we never addressed the question of consistency between the two approaches which we will

be our focus in the sequel.

First, note that a comparison of the explicit pricing formula presented in Chapter 3 for exponential

utility functions (Theorem 3.2.2) with the one studied in Chapter 4 is worthless as they are completely

equivalent when identifying γ with αq(1− %2) in

pU (x, q;h) = − 1

αq(1− %2)
log
(
EQ [exp(−αq(1− %2)h(YT ))

])
.

However, we also provided an expansion result in the small claim limit for exponential utility which we

will compare. On the other hand, we also turn our attention to the interesting case of comparing the

power law utility approximation in the small claim limit with the exponential utility model from Chapter

4.

5.2.1 Comparison of Power Law Utility Model from the Small Claim Limit

with the Exponential Utility Model from the Large Claim Limit

To compare a power law utility model with an exponential utility model, we have seen in Remark 2.0.1

that

α =
R

x0
,

where α is the absolute risk aversion (parameter in exponential utility), R the relative risk aversion (pa-

rameter in power law utility) and x0 is the initial wealth, has to hold true. But note that this is only a

local assertion as the absolute risk aversion is constant for exponential utilities, but for power utilities,

it changes over time. Hence this relationship definitely does not hold for long time horizons. But for our

setting of T = 1, this achieves the purpose.

We focus now on a scenario in the small claim limit and one in the large claim limit for a Put option.

5.2.1.1 Small Claim Limit

Parameters - We choose the following parameters:

q = 0.01, % = 0.8, K = 100, T = 1, t = 0 , µ = 0.04, η = 0.3, σ = 0.35, ν = %µησ = 0.0274,

R = 3, x0 = 500

By the choice of those parameters, we get implicitly that α = R
x0

= 0.006 and that γ = qα(1 − %2) =

9.6 · 10−6. Moreover, note that we chose ν in such a way that the drift of Yt under Qmin is zero, i.e.

δ = ν − %µησ = 0.
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Figure 5.2.1: Comparison of the price for a Put option in the small claim limit.

We plotted in Figure 5.2.1 the two price dynamics with respect to the initial value Y0.

’Henderson’ represents the price dynamics given in Theorem 3.2.1, where the prices of ’Robertson’ are

from (4.3.1). For ease of convenience, we plotted the standard Put payoff profile (dotted line) and the

Black-Scholes prices.

Surprisingly, they are all almost identical and there is only a marginal deviation from Black-Scholes prices

seen by naked eye.

In Figure 5.2.2, we therefore compare the deviations of the two approaches with respect to the classical

arbitrage-free Black-Scholes price EQ[h(YT )]. As we already have seen in Chapter 3, Black-Scholes prices

and ’Henderson’ are almost identical due to the negligible impact of the second order term in the pricing

formula from the small claim limit.

(a) Absolute error. (b) Relative error.

Figure 5.2.2: Deviations from Black-Scholes price EQ[h(YT )].

It turns out that the large claim limit approach deviates significantly from Black-Scholes prices. Even

though we did increase the number of grid points for the numerical approximation, the deviation did not
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change significantly hence we can exclude numerical errors as a source of deviation. Therefore, we can

conclude that the deviation is due to the large position effect as seen in Chapter 4. We have seen in

Figure 4.4.5 that the large claim limit model produces prices near to the arbitrage-free price for small

claim quantities. We even have the convergence

lim
q→0

pUα(x, q;h) = EQ[h(YT )],

but the large position effect dominates quite fast, even for position sizes q ≈ 0.01 and prices are pushed

towards the minimal arbitrage-free price.

Of course, we will expect a different behavior for large claim positions. This is subject of our next

paragraph.

5.2.1.2 Large Claim Limit

Parameters - We choose the following parameters:

q = 100, % = 0.8, K = 100, T = 1, t = 0 , ν = 0.0274, µ = 0.04, η = 0.3, σ = 0.35, R = 3,

x0 = 500

Also here, we choose ν in such a way that the drift of Yt is zero under Qmin.

Figure 5.2.3: Comparison of the price for a Put option in the large claim limit.

Figure 5.2.3 shows a very different behavior. We see from the dynamics that ’Robertson’ produces still

reasonable prices when taking into account the large position effect as established and visualized in Figure

4.4.5.

In contrast to that, the approach by ’Henderson’ provides us completely useless prices, which are even

negative (hence not arbitrage-free) and not anymore applicable. The negative prices derive their origin

in the dominating second order term (in the case of large positions).

The resulting errors are plotted in Figure 5.2.4. As mentioned, we see that both approaches do not depict

the arbitrage-free Black-Scholes prices.
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(a) Absolute errors. (b) Relative errors.

Figure 5.2.4: Deviations from Black-Scholes price EQ[h(YT )].

Let us turn out attention to the comparison of the two models under exponential utility, where we do

not use the local argument of α = R
x0

anymore.

5.2.2 Comparison of Exponential Utility Model from the Small Claim Limit

with the Exponential Utility Model from the Large Claim Limit

We shall now compare the exponential utility model from the large claim approach with the one derived

in the small claim limit.

5.2.2.1 Small Claim Limit

Parameters - We choose the following parameters:

q = 0.01, % = 0.8, K = 100, T = 1, t = 0, ν = 0.0274, µ = 0.04, η = 0.3, σ = 0.35,

R = 3, x0 = 500

Due to the fact that the exponential utility model from the small claim limit provides almost identical

prices as the power utility model from the small claim limit approach. We have seen some considerable

differences in the magnitude of the second order term like we have investigated in Section 3.3.2.2, but

as the second order term is anyway almost negligible, we discover nearly the same plots as in Section

5.2.1.1.

Hence, also in this case, both models depict the Black-Scholes prices in a very exact manner.

But from a computational point of view, the exponential model derived in the small claim limit is much

more efficient as it requires only the numerical approximation of the conditional variance of h(YT ) - we

will discuss the computational effort in the next section.
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Figure 5.2.5: Comparison of the price for a Put option in the small claim limit.

(a) Absolute errors. (b) Relative errors.

Figure 5.2.6: Deviations from Black-Scholes price EQ[h(YT )].

5.2.2.2 Large Claim Limit

Parameters - We choose the following parameters:

q = 100, % = 0.8, K = 100, T = 1, t = 0 , ν = 0.0274, µ = 0.04, η = 0.3, σ = 0.35,

R = 3, x0 = 500

Lastly, we compare the two exponential utility models in the large claim limit. Again, we recover a

similar behavior as seen in Section 5.2.1.2. ’Henderson’ provides us with completely useless prices (the

negative prices come from the large weighting of the second order term) while ’Robertson’ depict the

large position effect.
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Figure 5.2.7: Comparison of the price for a Put option in the large claim limit.

(a) Absolute errors. (b) Relative errors.

Figure 5.2.8: Different errors with respect to the arbitrage-free price EQ[h(YT )].

5.2.3 Computational Resources

We have seen, that the two models perform very well with reasonable prices in the respective claim

limit. In addition to that, we also pointed out that the large claim approach by ’Robertson’ provides us

with prices nearly consistent with ’Henderson’ in the (very) small claim limit. But already with little

increasing claim sizes, the large position effect shows up and the spread with respect to Black-Scholes

prices increases.

Lastly, we address the question of performance and computational resources. modeling the value function

resp. average utility indifference prices under power utility derived by ’Henderson’ requires the numerical

approximation of double Riemann integrals with stochastic integrands. In our implementation, we tackled

this problem with a by MatLab provided function (dblquad) at each point in a discretization of the time

and space interval. This of course requires a lot of computational resources and, in our case, could take
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up to hours of computation. Certainly, one could devote a lot of time for optimizing above approach but

this was not our focus in this thesis.

In contrast to that, the exponential utility approach by ’Henderson’ requires just the modeling of the

conditional variance which can be implemented very easily and efficient. This took us time in the area

of several seconds.

For modeling prices from ’Robertson’, one has to numerically approximate an integral (we did this by

Gauss quadrature), also an easy and tractable challenge requiring several seconds for computation.

In conclusion, this is also one of the main advantages of working under exponential utility: calculations

become more tractable mathematically as well as from a computational point of view.

5.3 Conclusion

In conclusion, the small claim limit approach from Chapter 3 provides prices close to the arbitrage-free

Black-Scholes price for very small position sizes. Nevertheless, also the large claim limit model gives us

feasible prices in this limit, but the large position effect shows up very fast (already for q = 1). On the

other hand side, the small claim limit approach is not at all applicable for large position sizes as expected.

However, the large claim limit approach gives us a more robust tool in the sense of applicability with the

drawback of larger deviations from the arbitrage-free price - which does not have to be a disadvantage,

as we are in a setting of incomplete markets and prices are not unique.

Developing a theory from a model also involves numerous disadvantages which of course can be criticized.

A big drawback of both approaches is that they are based on mathematical assumptions. This yields in

restrictions as seen for example in Chapter 3, where we were not able to price short Call options.

Moreover, a general disadvantage of the approach of pricing claims based on individual utilities is that

explicit calculations are possible rather rarely (most likely in the case of exponential utility) and one

has to study their approximations in some limit. Therefore, often only ’local’ statements are achievable.

Hence it seems like exponential utility is very suitable in such a consensus. Unlikely, this is not the whole

truth: for example, it turns out that utility indifference prices are independent of the initial wealth x0,

which could be undesirable as one could imagine that initial wealth has a significant impact on the risk

aversion and hence prices.

Despite this, the utility indifference approach provides an accepted methodology for pricing claims under

market incompleteness. Moreover, the goal of this approach is to find optimal investment strategies and

by this one obtains directly hedging strategies. Thus, pricing and hedging can be viewed as the same

problem, which is of course a big advantage.

Lastly, we point out that Chapter 4 provides an approach for a sequence of markets becoming complete

by letting the position size resp. the correlation become infinity resp. one. A drawback is the lack of room

for interpretation. The limiting market has no plausible economical interpretation and only assertions

and studies in a large, but fixed market in the sequence are plausible. But it gives an enormous insight

in the drivers for the limiting prices, depending on the speed of convergence.
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Small Claim Limit for General

Semimartingale Models

We provide here a heuristic overview on a general semimartingale model in the small claim limit. Our

main references are [Kal09] and [MK12].

Let St denote the price process of a traded asset in the market (Ω, (Ft)0≤t≤T ,F,P) for a finite time horizon

T > 0. Moreover, let Yt denote another price process of an nontraded asset on which an European claim

h is written, denoted by h(YT ). We assume a constant numeraire given by the bank account Bt = 1 and

that St as well as Yt are semimartingales.

The agent’s goal is to maximize her expected utility from terminal wealth given she possesses an initial

wealth of x0 > 0. This means that the investor tries to maximize

EP [U(x0 + (π · S)T + qh(YT )]

over all admissible strategies π ∈ H.

If the agent has the choice of exchanging n units of h(YT ) for a premium p = p(n) per unit, she would

accept the offer in the case if this trade will raise her (expected) utility at time T which then would be

supH∈H EP [U(x0 + np+ (π · S)T + q′h(YT ))] , for q′ = q − n < q if p > 0.

Otherwise, she would deny the offering and her value function stays the same. The lowest price for which

the agent would accept the offer is the average utility indifference price pU (x, q;h). Due to the fact that

this premium is very hard to determine, we try to expand it in the neighborhood of (x, 0;h).

For this, we rely on the following assumption:

Assumption 7. We assume a smooth dependence with respect to q

p(x0, q;h) = p(0) + δq + o(q)(6.0.1)

for some constants p(0), δ.

Moreover, for π ∈ H

π(x0, q;h) = π? + ηq + o(q)(6.0.2)

for constants π? denoting the optimal strategy in the classical Black-Scholes-Merton problem and constant
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η denoting the hedge in h(YT ).

Our goal is now to find these constants:

6.1 Optimal Strategy without Contingent Claims

In a first step, consider the classical Black-Scholes-Merton investment problem (without any claim). We

present here different approaches of finding the optimal strategy.

By the definition of the optimal strategy π?, we should have

EP [U(x0 + ((π? + π′) · S)T )] ≤ EP [U(x0 + (π? · S)T )]

for any π′ ∈ H. Applying Taylor expansion to the left-hand side leads us to

EP [U(x0 + ((π? + π′) · S)T )] ≈ EP [U(x0 + (π? · S)T )] + EP [U ′(x0 + (π? · S)t)(π
′ · S)T ] .

We define a new probability measure Q̃ by

dQ̃
dP

:=
U ′(x0 + (π? · S)T )

EP [U ′(x0 + (π? · S)T )]
.

We find that EP [U(x0 + ((π? + π′) · S)T )] is dominated by EP [U(x0 + (π? · S)T )] if and only if

EQ̃ [(π′ · S)T ] ≤ 0 for all π′ ∈ H. The latter holds if and only if S is a Q̃-martingale.

In summary, we have found that an arbitrary element π? ∈ H maximizes the expected utility at time T

if and only if Q̃ is an equivalent martingale measure for S.

An equivalent and maybe more straightforward approach is the following: As we try to maximize over

π? ∈ H

EP

[
U

(
x0 +

∫ T

0

π?t dSt

)]
,

we get the first order condition of

EP

[
U ′

(
x0 +

∫ T

0

π?t dSt

)
(ST − S0)

]
!
= 0.

Hence, by a change of measure dQ̃
dP as above, we obtain

EQ̃ [ST − S0]
!
= 0,

which is tantamount to the martingale property of St under Q.
Lastly, we also want to provide an approach derived by considering the dual problem. We have seen

in (2.1.1) that the dual approach gives us an upper bound in terms of the generalized relative entropy.

Essentially for any equivalent martingale measure Q̃ and any π? ∈ Hperm, we have

EP

[
U

(
x0 +

∫ T

0

π?t dSt

)]
≤ EP

[
V

(
y
dQ̃
dP

)]
+ xy.
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This inequality is an equality, if we choose y dQ̄dP in the optimal way, i.e. if y dQ̄dP = U ′(x0 +
∫ T

0
π?t dSt) and

if EP[(x+
∫ T

0
π?t dSt)y

dQ̄
dP ] = xy.

Hence we have shown that an arbitrary strategy π̂ optimizes the primal problem (in the set of Hperm) if

([MK12, Proposition 2.2])

1. U ′(x0 +
∫ T

0
π̂tdSt) = y dQ̄dP for an equivalent martingale measure Q̄, and

2. x = EP[(x+
∫ T

0
π̂tdSt)

dQ̄
dP ] = EP[(U ′)−1(y dQ̄dP )dQ̄dP ].

6.2 Optimal Strategy including Contingent Claims

Having given several criteria for an optimizing strategy in the investment problem without any claim,

we no want to turn our attention to the optimization problem including q claims h(YT ) with price

p = p(x0, q;h) per unit. As already seen, we try to maximize

EP [U(x0 + qp+ (π(x0, q;h) · S)T − qh(YT ))](6.2.1)

= EP [U (x0 + (π? · S)T + q(p(0) + δq + ((η + o(1)) · S)T − h(YT )) + o(q2)
)]

= EP [U (x0 + (π? · S)T )] + qEP [U ′ (x0 + (π? · S)T ) (p(0) + δq + ((η + o(1)) · S)T − h(YT )]

+
q2

2
EP [U ′′ (x0 + (π? · S)T ) (p(0) + (η · S)T − h(YT ))2

]
+ o(q2)

over all π ∈ H.
As we have in the case of power law utility U(x) = 1

1−Rx
1−R that U ′′(x) = −RU ′(x)

x , this reduces to

EP [U (x0 + (π? · S)T )] + qEP [U ′ (x0 + (π? · S)T )]EQ̃ [p(0) + δq + ((η + o(1)) · S)T − h(YT )](6.2.2)

− q2EP [U ′(x0 + (π? · S)T )]
R

2
EQ̃

[
x0 + (π? · S)T

x2
0

(
p(0) + (η · S)T − h(YT )

x−1
0 (x0 + (π? · S)T )

)2
]

+ o(q2).

As we are working with the optimizer π?, we know that Q̃ is an equivalent martingale measure, hence

EQ̃ [(η + o(1)) · S)T ] = 0.

We define a second probability measure Q̄ equivalent to Q̃ by

dQ̄
dQ̃

=
x0 + (π? · S)T

x0
=

x0 + (π? · S)T

EQ̃ [x0 + (π? · S)T ]
.

Moreover, it follows that Q̄ is an equivalent martingale measure for the numeraire Nt = x0+(π?·S)t
EQ̃[x0+(π?·S)T ]

.

Hence

St
Nt

=
StEQ̃ [x0 + (π? · S)t]

x0 + (π? · S)t
=

Stx0

x0 + (π? · S)t

is a Q̄-martingale.

In the sequel, we denote by p̄, h̄, S̄ resp. π̄ the discounted prices, claim payoffs, stock price resp. hedging

strategy with respect to the numeraire Nt. As π ∈ H is, by definition, self-financing, so is η, hence the
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Chapter 6. Small Claim Limit for General Semimartingale Models

following representation holds

p(0) + (η · S)T − h(YT )

x−1
0 (x0 + (π? · S)T )

= p̄(0) + (η · S̄)T − h̄(YT ).(6.2.3)

It follows that (6.2.2) reduces to

EP [U(x0 + (π? · S)T )] + qEP [U ′(x0 + (π? · S)T )]
(
p(0)− EQ̃ [h(YT )]

)
(6.2.4)

+ q2EP [U ′(x0 + (π? · S)T )]

(
δ − R

2x0
ε2(η)

)
+ o(q2),

where

ε2(η) := EQ̄ [(p̄(0) + (η · S̄)T − h̄(YT ))2
]
.(6.2.5)

Note that we initially wanted to optimize (6.2.1). By our assumption to π ∈ H, this reduces to an

optimization over η ∈ H. Hence, we have to minimize (6.2.5) to find a maximizer for (6.2.4).

This quadratic minimizing problem has a nice interpretation, which we will establish in the next para-

graph.

6.2.1 Quadratic Hedging

The goal is to find the strategy η? ∈ H which minimizes

ε2(η) = EQ [(x0 + (η · S)T − h(YT ))2
]
,

where the expectation is taken under some probability measure, say, Q.

The term x0 + (η · S)T is the value of the replicating portfolio, as η is self-financing and hence ε2(η)

measures the mean squared error of replicating the claim h with the strategy η. In a complete market

framework, this error is of course zero due to the possibility of perfect replication. In all other cases,

under any market incompleteness, we have seen that the approach by replicating the random payoff h

does not work anymore, hence investors are always exposed to some risk and ε2(η) does not vanish and

a possibility to measure this unhedgeable risk is exactly given by ε2(η).

In the complete market, the unique arbitrage-free price is given by

EQ[h(YT )],

while there is no unique price under market incompleteness.

Under incompleteness, a reasonable suggestion for the price might therefore be

EQ[h(YT )] + ξε2(η?),

where ξ is a parameter representing the risk-aversion of a certain agent (the higher ξ, the more risk-

averse the investor), hence the price would consist of the unique arbitrage-free price plus resp. minus a

compensation for the unhedgeable risk.

We have therefore to determine η? and ε2(η?).
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6.2. Optimal Strategy including Contingent Claims

In the case, where St is a Q-martingale20, Galtchouk-Kunita-Watanabe decomposition provides us

a way of determining these quantities.

Proposition 6.2.1. ([Sch99a, (0.3)])

Any square Q-integrable random variable H can uniquely be written as

H = EQ[H|F0] +

∫ T

0

χHu dSu + LHT P-a.s.,

where LHt is a martingale strongly orthogonal to the martingale Su and χHu a predictable process.

Hence, denote by Vt = EQ [h(YT )|Ft] the martingale generated by h. Now, Galtchouk-Kunita-Watanabe

decomposition applied to Vt yields a representation of the form

Vt = EQ [h(YT )|Ft] = EQ [h(YT )|F0] + (χ · S)t + Lt,

where Lt is a Q-martingale orthogonal to St and χ a predictable process. Here, we require that St is a

Q-martingale.

We can identify, using the uniqueness of the Galtchouk-Kunita-Watanabe decomposition that

η? = χ

and

ε2(η?) = EQ [(VT − EQ[h(YT )]− (χ · S)T )2
]

= EQ [L2
T

]
= EQ[〈V, V − (η? · S)〉T ],

where we used in the last equality the fact that M2
t − 〈M〉t is a martingale for a martingale Mt and the

fact that 〈V − (η? · S), V − (η? · S)〉 = 〈V, V − (η? · S)〉. More concretely, we can write

χt =
d〈V, S〉t
d〈S, S〉t

.

Summarizing, Galtchouk-Kunita-Watanabe decomposition gives us a way of finding risk-minimizing

strategies in the case where St is a martingale.

Turning our attention back to (6.2.4):

We have to find the minimizing η? of

EQ̄ [(p̄(0) + (η · S̄)T − h̄)2
]
.(6.2.6)

By neglecting the o(q2) terms, we see that η is the integrand in the GKW decomposition of the Q̃-

martingale V̄t = EQ̄ [h̄(YT )|Ft
]
, that is

η?t =
d〈V̄ , S̄〉Q̄t
d〈S̄, S̄〉Q̄t

.

Together with the known form of π̃? = µ
σ2RX, we have found the parameters in (6.0.2). Turning our

attention to the price, we are left with finding p(0) and δ in (6.0.1).

20It turns out, that other cases are also tractable, but more involved. They still heavily rely on the Galtchouk-Kunita-
Watanabe resp. Föllmer-Schweizer decomposition, which is the Galtchouk-Kunita-Watanabe decomposition under the
minimal martingale measure [Sch99a].
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By the definition of the average utility indifference price, the following has to hold

EP [U(x0 + (π? · S)T )]
!
= EP [U(x0 + qp+ (π? · S)T − qh(YT ))] ,

which implies, using (6.2.4), that

p(0) = EQ̃[h(YT )] and δ =
R

2x0
ε2(η).

In conclusion, we have shown that

π(q) = π? + qη + o(n),

where π? is the optimizing strategy if and only if St is a Q̃-martingale and

η?t =
d〈V̄ , S̄〉Q̄t
d〈S̄, S̄〉Q̄t

.

Moreover, we have identified in

p(x, q;h) = p(0) + qδ + o(n)

the parameters

p(0) = EQ̃[h(YT )] and δ =
R

2x0
ε2(η).

Hence the price consists of a first order term coinciding with the Black-Scholes price and an additional

term that compensates the unhedgeable risk per unit.

6.3 Comparison with Small Claim Limit Approach

We have seen in the beginning of Chapter 3, that the Merton hedging strategy of investing in St with

initial wealth of Xt + qCt is given by

π̃t =
µ

σ2R
(Xt + qCt).

Moreover, by considering Q̃, we see that

dQ̃
dP

:=
U ′(x0 + (π? · S)T )

EP [U ′(x0 + (π? · S)T )]
=

exp
(
−µ

2

σ2T + µ2

2σ2RT −
µ
σBT

)
exp

(
− µ2

2σ2T + µ2

2σ2RT
)

= exp

(
−µ
σ
BT −

µ2

2σ2
T

)
= E

(
−µ
σ
·B
)
T
,

which is nothing else than the minimal martingale measure Qmin.

Lastly,

dQ̄
dQ̃

=
x0 + (π? · S)t

x0
= exp

(
µ

σR
B̃T −

µ2

2σ2R2
T

)
= E

( µ

σR
· B̃
)
T
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for a Qmin-Brownian motion B̃t. Therefore, by Yor’s formula

dQ̄
dP

=
dQ̄
dQ̃

dQ̃
dP

= E
( µ

σR
· B̃
)
T
E
(
−µ
σ
·B
)
T

= E
( µ

σR
· B̃ − µ

σ
·B
)
T

exp
(
〈 µ
σR
· B̃,−µ

σ
·B〉T

)
= E

(
σ(1−R)

µR
·B
)
T

.

We then see that Q̄ coincides with the measure P̂ defined in Theorem 3.2.1.

As St is a Qmin-martingale, it follows that Q̄ is an equivalent martingale measure for the numeraire

Nt = exp
(
µ
σR B̃T −

µ2

2σ2R2T
)−1

.

By Bayes formula, we get

V̄t = EQ̄ [h̄(YT )|Ft
]

=

(
dQ̄
dQ̃
|Ft
)−1

EQ̃
[
dQ̄
dQ̃
|FT h̄(YT )|Ft

]
=

x0

x0 + (π? · S)t
EQmin [h(YT )|Ft]

and

S̄t = St
x0

x0 + (π? · S)t
.

Therefore, by setting Ct = EQmin [h(YT )|Ft], CYt = ∂Y Ct(
x0

x0 + (π? · S)t

)−2

d〈V̄ , S̄〉t = d〈C, S〉t = d〈CY ηY dZ, σSdB〉t

= ηCYt YtσSt%dt.

In the same way we get (
x0

x0 + (π? · S)t

)−2

d〈S̄, S̄〉 = σ2S2
t dt

which leads to

η?t =
d〈V̄ , S̄〉t
d〈S̄, S̄〉t

=
η%

σ
CYt Yt

1

St
,

as desired under the observation that π̃? = π̃(x0, q;h) − η̃?. This is exactly what Theorem 3.2.1 states.

Turning our attention to the pricing formula, we see that the first term EQmin [h(YT )|Ft] is derived easily.

For the second term, by setting C̄t := EQ̄[h̄(YT )|Ft] and C̄Yt := ∂Y C̄t, we obtain

δ =
R

2x0
ε2(η?) =

R

2x0
EQ̄[(p̄(0) + (η? · S̄)T − h̄(YT ))2]

=
R

2x0
EQ̄

[∫ T

t

d〈CY dY,CY dY − η?dS̄〉u

]

=
R

2x0
EQ̄

[∫ T

t

(CYu )2(Yu)2η2 − (CYu )2(Yu)2η2%2

exp( µ2

σ2Ru−
µ2

2σ2R2u+ µ
σRBu)2

du

]

=
R

2x0
η2(1− %2)EQ̂

[∫ T

t

(CYu Yu)2

(X0
t /Xt)2

du

]
.
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In conclusion, the general semimartingale model by [Kal09] entirely reinforces to the basis risk model as

presented in Chapter 3.

Finally, we address the question on the additional insight we gained by following this general approach.

This general approach gave us a deeper understanding of the additional term in the value function

(Theorem 3.2.1) and the average utility indifference price (Corollary 3.2.1). As we are dealing with an

incomplete market framework, claims are not replicable and investors are exposed to unhedgeable risk.

This risk must be quantified in order to speak about hedging resp. risk minimizing and our way of doing

so was to consider the mean squared error. We then tried to minimize this error yielding in an optimal

hedge.

To the end, we want to emphasize that the classical Black-Scholes hedging strategy does also minimize

the mean squared error. This legitimates the use of this tool for quantifying error.
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Appendix A

Fundamental Theorem of Asset

Pricing

Definition A.0.1. Fix a physical measure P. We then say that Q is an equivalent (local) martingale

measure if Q ∼ P and all the (discounted) traded assets are Q-(local) martingales.

The following theorem is known as First Fundamental Theorem of Asset Pricing. It relates the existence

of a local martingale measure with the absence of arbitrage.

Theorem A.0.1. ([DS06, Theorem 8.2.1])

For a locally bounded semimartingale S = (St)t≥0, the following assertions are equivalent:

� There exists a probability measure Q equivalent to P under which S a local martingale.

� S does not permit a free lunch with vanishing risk.

From [DS06, Definition 11.2.2], we have that ’no free lunch with vanishing risk’ implies ’no arbitrage’.

Now we give a short heuristic interpretation of the condition ’no free lunch with vanishing risk’ and it’s

connection to ’no arbitrage.

An arbitrage opportunity is the existence of a trading strategy πt such that (π · S)T ≥ 0 and such that

P[(π · S)T > 0] > 0. In contrast to that, a ’free lunch’ is the existence of a contingent claim h̄ ≥ 0, h̄ 6= 0,

which cannot be (super-)replicated by an admissible trading strategy πt. But there exist claims h̄i ’close

to’ h̄ (limi h̄i → h̄ in some sense/topology) which can be superreplicated by admissible trading strategies

πit - hence an agent may ’throw away’

(πi · S)∞ − h̄i

for each i, yielding in a free lunch with vanishing risk. [FS10, p.9, p. 78, p.153].

Let us turn our attention to the Second Fundamental Theorem of Asset Pricing.

Theorem A.0.2. ([Fil09, Theorem 4.9])

Assume there exists an equivalent local martingale measure Q. Then the following are equivalent:

� The model is complete.

� The equivalent local martingale measure Q is unique.
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