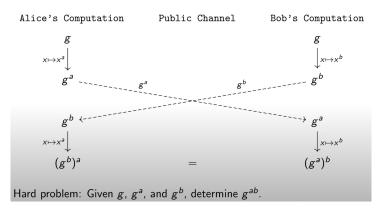
Supersingular Isogeny Key Encapsulation (SIKE)

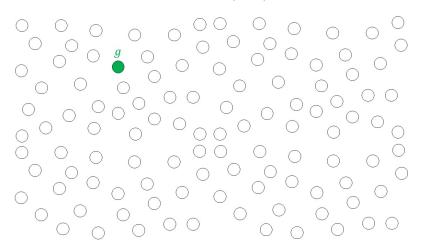
Yannick Bormuth, Dario Kermanschah, Michael Burkhalter, Lauro Böni

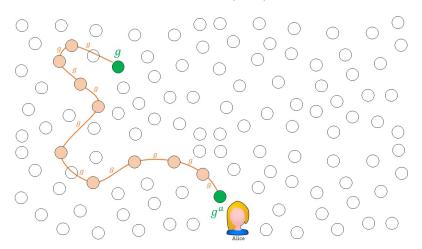
Krypt Det

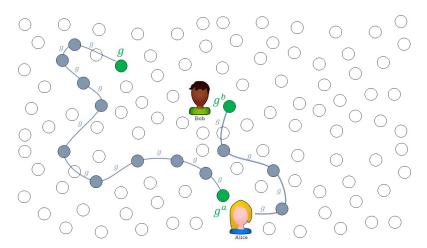
Bern, 3. September 2020

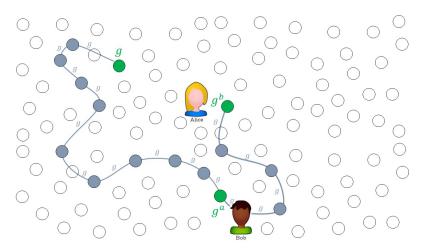

Overview

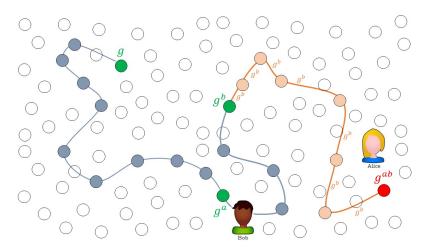
- 1 DH / SIDH protocol illustrated
 - Classical Diffie-Hellman
 - Supersingular Isogeny Diffie-Hellman (SIDH)
 - Supersingular Isogeny Key Encapsulation (SIKE)
- Practical Implementation
- Known Attacks
- Resource Requirements

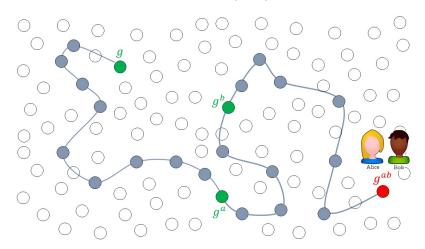

Recap: Classical Diffie-Hellman (DH) protocol


Setup: Fix a group G and $g \in G$.









From DH to Supersingular Isogeny Diffie-Hellman (SIDH) Let us turn our attention to the SIDH protocol:

From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

Let us turn our attention to the SIDH protocol:

• We are working on \mathbb{F}_{p^2} for some prime p of the form

$$p=2^{e_A}3^{e_B}-1.$$

From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

Let us turn our attention to the SIDH protocol:

• We are working on \mathbb{F}_{p^2} for some prime p of the form

$$p=2^{e_A}3^{e_B}-1.$$

 We consider the set of all supersingular Elliptic Curves and fix an initial curve E_0 .

From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

Let us turn our attention to the SIDH protocol:

• We are working on \mathbb{F}_{p^2} for some prime p of the form

$$p = 2^{e_A} 3^{e_B} - 1.$$

- We consider the set of all supersingular Elliptic Curves and fix an initial curve E_0 .
 - leads to a directed and regular graph
 - harder problem than non-supersingular (i.e. ordinary)

From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

Let us turn our attention to the SIDH protocol:

ullet We are working on \mathbb{F}_{p^2} for some prime p of the form

$$p=2^{e_A}3^{e_B}-1.$$

- We consider the set of all **supersingular** Elliptic Curves and fix an initial curve E_0 .
 - leads to a directed and regular graph
 - harder problem than non-supersingular (i.e. ordinary)
- Alice
 - P_A , Q_A such that $\langle P_A, Q_A \rangle = E[2^{e_A}] \cong \mathbb{Z}_{2^{e_A}} \times \mathbb{Z}_{2^{e_A}}$.
 - Computes $S_A = P_A + [k_A]Q_A$ (Note: S_A has order 2^{e_A})

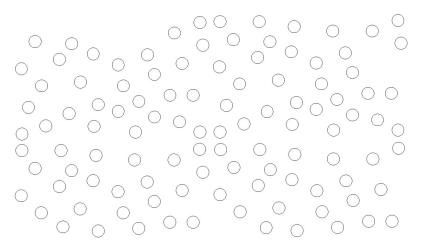
From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

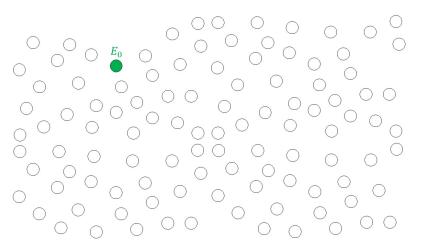
Let us turn our attention to the SIDH protocol:

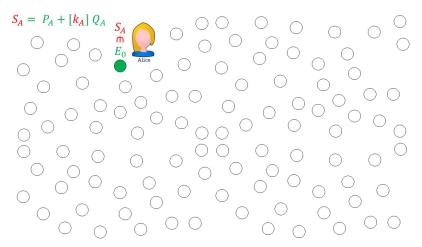
• We are working on \mathbb{F}_{p^2} for some prime p of the form

$$p=2^{e_A}3^{e_B}-1.$$

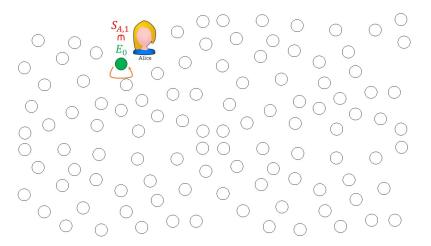
- We consider the set of all supersingular Elliptic Curves and fix an initial curve E_0 .
 - leads to a directed and regular graph
 - harder problem than non-supersingular (i.e. ordinary)
- Alice
 - P_A , Q_A such that $\langle P_A, Q_A \rangle = E[2^{e_A}] \cong \mathbb{Z}_{2^{e_A}} \times \mathbb{Z}_{2^{e_A}}$.
 - Computes $S_A = P_A + [k_A]Q_A$ (Note: S_A has order 2^{e_A})
- Bob
 - P_B , Q_B such that $\langle P_B, Q_B \rangle = E[3^{e_B}] \cong \mathbb{Z}_{3^{e_B}} \times \mathbb{Z}_{3^{e_B}}$.
 - Computes $S_B = P_B + [k_B]Q_B$ (Note: S_B has order 3^{e_B})

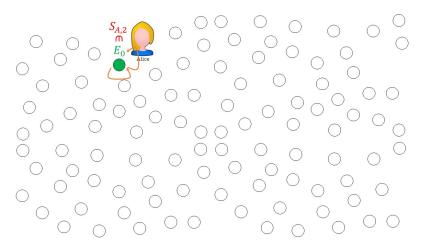

From DH to Supersingular Isogeny Diffie-Hellman (SIDH)

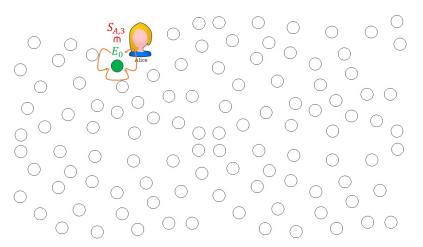

Let us turn our attention to the SIDH protocol:

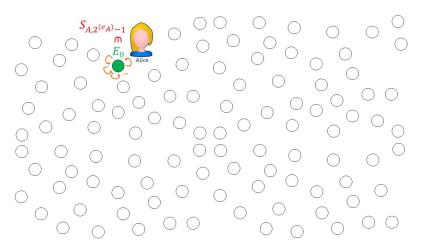

• We are working on \mathbb{F}_{p^2} for some prime p of the form

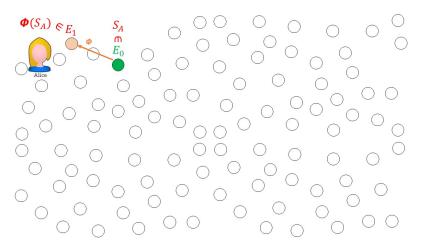
$$p=2^{e_A}3^{e_B}-1.$$

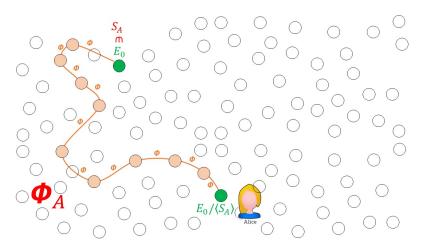

- We consider the set of all supersingular Elliptic Curves and fix an initial curve E_0 .
 - leads to a directed and regular graph
 - harder problem than non-supersingular (i.e. ordinary)
- Alice
 - P_A , Q_A such that $\langle P_A, Q_A \rangle = E[2^{e_A}] \cong \mathbb{Z}_{2^{e_A}} \times \mathbb{Z}_{2^{e_A}}$.
 - Computes $S_A = P_A + [k_A]Q_A$ (Note: S_A has order 2^{e_A})
- Bob
 - P_B , Q_B such that $\langle P_B, Q_B \rangle = E[3^{e_B}] \cong \mathbb{Z}_{3^{e_B}} \times \mathbb{Z}_{3^{e_B}}$.
 - Computes $S_B = P_B + [k_B]Q_B$ (Note: S_B has order 3^{e_B})

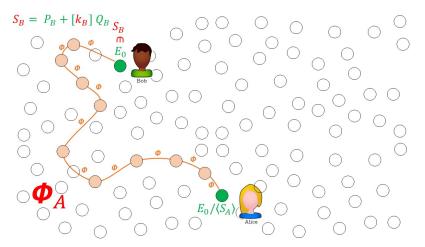


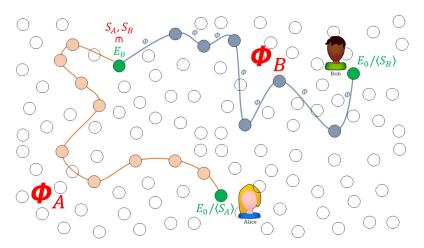


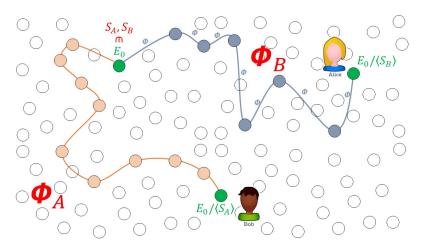


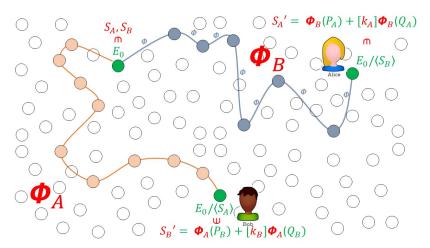


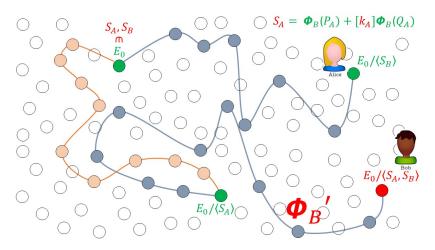


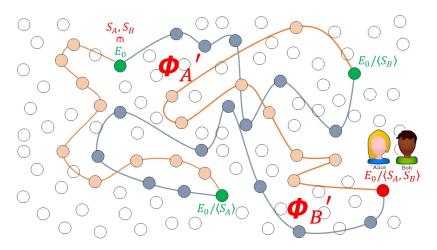


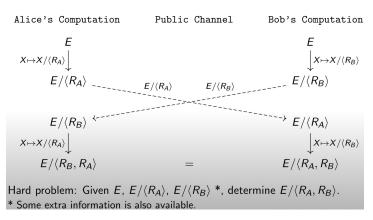












Setup: Fix a supersingular isogeny class C and $E \in C$.

From SIDH to SIKE

SIKE stands for Supersingular Isogeny Key Encapsulation.

From SIDH to SIKE

- SIKE stands for Supersingular Isogeny Key Encapsulation.
- It is motivated by a potential security flaw in SIDH, where Bob can reconstruct Alice's secret key k_A .

From SIDH to SIKE

- SIKE stands for Supersingular Isogeny Key Encapsulation.
- It is motivated by a potential security flaw in SIDH, where Bob can reconstruct Alice's secret key k_A .

In a nutshell

$$SIKE = SIDH$$

+ some mechanism preventing Bob from fooling Alice + compression.

Supersingular Isogeny Key Encapsulation (SIKE)

From SIDH to SIKE

- SIKE stands for Supersingular Isogeny Key Encapsulation.
- It is motivated by a potential security flaw in SIDH, where Bob can reconstruct Alice's secret key k_A .

In a nutshell

$$SIKE = SIDH$$

+ some mechanism preventing Bob from fooling Alice + compression.

Consequence:

- Protocol is no longer symmetric.
- Allows using key pairs more than once.

Supersingular Isogeny Key Encapsulation (SIKE)

From SIDH to SIKE

- SIKE stands for Supersingular Isogeny Key Encapsulation.
- It is motivated by a potential security flaw in SIDH, where Bob can reconstruct Alice's secret key k_A .

In a nutshell

$$SIKE = SIDH$$

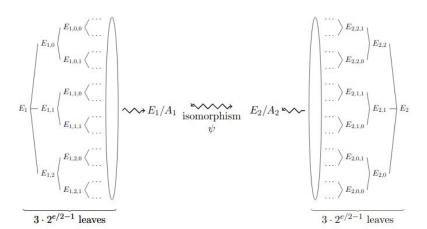
+ some mechanism preventing Bob from fooling Alice + compression.

Consequence:

- Protocol is no longer symmetric.
- Allows using key pairs more than once.

Practical implementation

Meet-In-The-Middle


Underlying Math Problem:

Given public parameters I_A , I_B , e_A , e_B , p, E, P_A , Q_A and $E/\langle S_A \rangle$: Compute the $I_A^{e_A}$ -isogeny $E \to E/\langle S_A \rangle$

- e_A steps in the I_A-isogeny graph are much fewer than the average number of steps necessary to join any two nodes
- Very likely that the e_A steps represent the shortest path between E and $E/\langle S_A \rangle$
- Build list of all destination nodes taking $e_A/2$ steps from E
- For each destination of length- $e_A/2$ walks from $E/\langle S_A \rangle$, compare to list until match is found

Schematic Of Meet-In-The-Middle Attack

Costs of Classical Attacks

- Classical run time $\mathcal{O}(p^{1/4})$
- $\mathcal{O}(p^{1/4})$ memory needed to build all walks from E
- Smallest SIKE prime has 434 bits makes memory needs prohibitively large
- Technical enhancements give slower algorithms when memory is limited (e.g. to $\sim 2^{80}$)

Costs of Classical Attacks

- Classical run time $\mathcal{O}(p^{1/4})$
- $\mathcal{O}(p^{1/4})$ memory needed to build all walks from E
- Smallest SIKE prime has 434 bits makes memory needs prohibitively large
- Technical enhancements give slower algorithms when memory is limited (e.g. to $\sim 2^{80}$)

EXPONENTIAL IN TIME AND SPACE

PQC security definition

NIST security strength categories

Computational resources required to break security definition

resources for key/collision search on AES/SHA3

NIST level	classical	reference	factoring	discrete logarithm		Elliptic	SIKE
MIST level	gates	algorithms		key	group	curve	SIVE
1	2 ¹⁴³	AES-128	3 072	256	3 072	256	SIKEp434
3	2 ²⁰⁷	AES-192	7 680	384	7 680	384	SIKEp610
5	2 ²⁷²	AES-256	15 360	512	15 360	512	SIKEp751

Quantum complexity is ...

- expressed in terms of classical gates
- based on NIST's restriction on a maximal running time of a quantum circuit

Performance & resources

Comparison

classical Elliptic Curve with 256-bit prime ←⇒ SIKEp434 (both corresponding to security level 1, AES-128)

	prime bits	secret key bytes	public key bytes	shared secret bytes	cycles	
EC	256	32	64	64	~ 4000000	
SIKE	434	330	374	16	\sim 25 000 000	

executed on a 2.7 GHz Intel Core i5-5350U (Broadwell) processor

other resources for SIKE protocol

- between $O(10^7)$ and $O(10^8)$ cycles
- timings of O(1) ms
- 70-80 mW energy consumption (on efficient ARM M4-Cortex processor)

The race for a new quantum-safe standard

What position does SIKE take?

small key sizes

 564B public keys/48B private keys (for security level 5) compared to kB/MB range for other quantum-safe protocols

increased runtime by a factor of around 100

seconds instead of miliseconds

Reason for SIKE to still be in the race

- EC theory well-proven in crytographic theory
- quantum attack algorithms not yet investigated enough
- desire for broad range of hardness assumption

