
Post-quantum Cryptography: Analysis of Supersingular

Isogeny Key Encapsulation (SIKE)

Yannick Bormuth∗, Dario Kermanschah†, Michael Burkhalter‡, Lauro Böni§

September 2, 2020

Abstract

This report aims to give thorough insights and analyses of Supersingular Isogeny
Key Exchange (SIKE), one of the remaining candidates for public key encryption in
NIST’s selection for quantum-safe cryptographic standards. We will motivate its
importance in post-quantum cryptography, introduce its mathematical foundations
and discuss its strengths and weaknesses. We present known attacks including
potential quantum speed-ups, computational resource requirements and put it in
perspective with current cryptographic standards. A Python script implementing
the key features of isogeny based cryptography for a simple set of parameters is
provided along with this report.

Key Words: Post Quantum Cryptography, Supersingular Isogeny Key Exchange,
Elliptic Curves, Public-key Exchange

∗Email address: yannick.bormuth@gmail.com
†Email address: dario.kermanschah@gmail.com
‡Email address: michael.burckhalter@protonmail.com
§Email address: laboeni@gmail.com

Contents

1 Introduction 2

2 Supersingular Isogeny Diffie-Hellman Key Exchange 2
2.1 Terminology, Notation and Prerequisites 5
2.2 SIDH Protocol . 10

3 From SIDH to SIKE 13

4 Known Attacks 14
4.1 Meet-in-the-middle attack . 14
4.2 Van Oorschot-Wiener Collision Finding 15
4.3 Quantum attack : Grover search . 15

5 Resource Requirements 15
5.1 Memory . 15
5.2 Performance . 17
5.3 Power . 18

6 Security analysis 18

7 Conclusion 20

A Python Implementation 23

1

1 Introduction

While awaiting the advent of large scale quantum computers the cryptographers’ com-
munity started in the first decade of the third millennium the search for crypto-
graphic algorithms that can whithstand attacks not only from classical computers
but from quantum computers as well. Such algorithms are the research object of
post-quantum cryptography and are also known as quantum-proof, quantum-safe, or
quantum-resistant algorithms. The need for novel public key primitives is undisputed as
it is known that the present most popular public-key algorithms are not quantum-safe.

The National Institute of Standards and Technology (NIST) acknowledged this
need and initiated a process to solicit, evaluate, and standardize one or more quantum-
resistant public-key cryptographic algorithms ([13]) in 2016. There were 17 public-
key encryption and key-establishment (PKE/KEM) algorithms and 9 digital signature
algorithms (DSA) in NIST’s second round. In July 2020, NIST announced the 7 finalists
- of which 4 on PKE/KEM and 3 on DSA - for round 3. The finalists will continue to be
reviewed for consideration for standardization at the conclusion of the third round. In
addition, eight alternate candidates selected for a potential fourth round of evaluation.
Many of these alternate candidates have worse performance than the finalists but might
be selected for standardization based on a high confidence in their security.

In this project, we focus on one of the alternate candidates for PKE/KEM, namely
SIKE (Supersingular Isogeny Key Encapsulation). The choice of this protocol was made
before the announcement of the round 3 finalists, see [14].

2 Supersingular Isogeny Diffie-Hellman Key Exchange

Consider the following cryptographic problem: Two parties want to communicate se-
curely but are only given a public channel. How can they exchange a secret between
them? Asymmetric cryptography provides us with a solution. Each of the two parties
chooses a private key for themselves and computes a public key based on some public
parameters and their own private key. While one party’s public key is accessible for
everyone, it is only useful for the other party. In fact, using the other party’s public
key together with their own private key, they can compute a secret, shared between
the two parties. The computations both parties have to perform are based on a math-
ematical problem that generates one-way functions. These one-way functions are the
reason a secure key exchange is possible. More precisely, a one-way function guarantees
that it is computationally unfeasible for an outsider to compute the two party’s shared
secret, not even just part of it, given public parameters only. On the other hand, it is
comparably easy for the two parties to compute their shared secret, as they not only
know the public parameters but also have direct access to their own secret key.

The Supersingular Isogeny Diffie-Hellman (SIDH) key exchange is one particular
construction of such an asymmetric cryptographic algorithm. Before we dive into the
rather overwhelming mathematics of supersingular elliptic curves and isogenies between
them, we first want to motivate some of the terminology of SIDH. As the name sug-
gests, SIDH works in an analogous fashion as the conventional Diffie-Hellman (DH) key
exchange. To introduce the new concepts of SIDH, it can therefore help to directly link

2

existing notions in the DH protocol with their corresponding counterparts in SIDH.

Overview of the DH key exchange. Let us begin by repeating the mathematical
foundations of the DH key exchange that relies on finite field arithmetics. The protocol
requires two parties, Alice and Bob, to agree on a prime number p defining a work space,
the multiplicative group of integers modulo p, denoted as (Z/pZ)×. Alice and Bob also
agree on a special public element in this group, one of its generators g. The protocol
then requires Alice to choose a secret key, an integer 1 < a < p, and to compute a
public key ga. Analogously, Bob chooses his secret key 1 < b < p and computes his
public key gb. After exchanging the public keys, the two parties can then compute their
shared secret gab by exponentiating the other party’s public keys with their own secret
key.

General cryptographic requirements. The DH protocol, as well as any asymmetric
cryptographic protocol as e.g. SIDH, has to satisfy three key properties, such that it
provides a practical and secure key exchange: 1. the shared secret cannot be computed
in reasonable time given the public parameters, 2. the shared secret is reasonably easy
to compute for one party given their secret key and 3. the size of the parameters of
the protocol are such that it takes a reasonable amount of resources to exchange and
to store them. What it means to be reasonable in this context is subject to the state
of the art regarding computational resources and can therefore change with time.

The development of quantum computers has given rise to new algorithms that
have faster run times than their classical counterparts. More specifically, the problem
of integer factorisation can currently be solved classically in sub-exponential-time by
means of a highly optimised General Number Field Sieve algorithm. Shor’s algorithm
however, provides a polynomial-time quantum solution. In fact, the quantum speed up
lies in a period-finding subroutine. Since the security of many popular cryptographic
protocols, as the DH key exchange, rely on the fact that period-finding is a hard problem
(for DH see discrete logarithm problem), quantum computers pose a serious security risk
for current cryptographic standards. The development of quantum-safe cryptographic
protocols is therefore a necessity to maintain uncompromised privacy standards.

While the conventional DH protocol is clearly vulnerable by quantum algorithmic
attacks, the SIDH key exchange promises to provide a quantum-safe security protocol.

SIDH in a nutshell. In simple words, the core idea of the SIDH protocol is to define a
graph on the set of supersingular j-invariants (which uniquely characterize isomorphic
elliptic curves). The vertices are given by the different j-invariants and the edges are
given by the respective isogenies (functions with some desirable properties mapping
points from one elliptic curve to another). Alice and Bob start on separate (public)
generators PA, QA ∈ E0 and PB, QB ∈ E0, respectively on a pre-defined (and public)
initial curve E0. They linearly combine these two points by a (secret) constant to
obtain (secret) points SA and SB, respectively. These two points are then be mapped
(secretly) to new elliptic curves (characterized by their j-invariants) by the use of the
isogenies. After some iterations, they exchange their curves and the mapping of their

3

starting points and redo the whole iteration again. Finally, they land on the same
j-invariant, which then is the shared secret of the protocol.

Similarities between SIDH and DH. As in the DH key exchange, SIDH requires two
parties, Alice and Bob, to agree on a prime p, defining a work space, the set of super-
singular elliptic curves S over the Galois field Fp2 . Therefore, we still rely on finite
field arithmetics, however SIDH adds a higher level of operations: maps between elliptic
curves, so called isogenies. More precisely, an isogeny is a group homomorphism map-
ping one point from one elliptic curve to another, Φ : E → E′, therefore connecting
the two elements E and E′ within S. Alice and Bob then agree on a public element in
this set S, one particular supersingular elliptic curve E0. The protocol requires Alice to
choose a private generator SA, a point on E0, which generates the corresponding private
isogeny ΦSA

: E0 → E0/〈SA〉 that computes the elliptic curve E0/〈SA〉. Analogously,
Bob chooses another point on E0 , his private generator SB, which generates his private
isogeny ΦSB

: E0 → E0/〈SB〉 that computes E0/〈SB〉. Alice and Bob then exchange
E0/〈SA〉 and E0/〈SB〉 and compute their shared secret, corresponding to the elliptic
curve E0/〈SA, SB〉 using their private keys and the respective isogenies ΦΦSB

(SA) and
ΦΦSA

(SB).
There is an obvious analogy between the DH and the SIDH protocol. It relies on the

correspondence between the work spaces (Z/pZ)× and S, the operations multiplication
× and isogeny Φ and their starting elements g and E0. However, after only reading this
brief outline of the SIDH protocol one would remain with several unanswered questions.
The more obvious ones are: How does one find an isogeny ΦS : E0 → E0/〈S〉 for a
given point S on the elliptic curve E0? What elliptic curve does the quotient E0/〈S〉
refer to? In Section 2.1, we will see that a point S on E0 contains enough information
to find both the isogeny ΦS and the curve E0/〈S〉. However, this brief summary of the
protocol has some more subtleties that we will address now.

Differences between SIDH and DH. While the isogenies ΦSA
and ΦSB

can be com-
puted directly using the public parameters and each party’s own private generator SA
or SB, there appears to be a problem when computing ΦΦSB

(SA) or ΦΦSA
(SB) as these

isogenies depend on both party’s private generators. More explicitly, they depend on
the image under the other party’s private isogeny ΦSB

(SA) or ΦSA
(SB). How can Al-

ice and Bob now compute their isogenies without having to know each others private
generators, effectively breaking the security of the protocol?

The SIDH protocol provides an answer to this question. The solution is to extend
the public parameters with two basis points for each party, PA, QA, PB, QB each
on the public curve E0. Furthermore, each party has to propagate the other party’s
basis points through its own isogeny and publish them, ΦSA

(PB), ΦSA
(QB), ΦSB

(PA),
ΦSB

(QA), as part of its public key. The public basis points are then linked to the
private generators through SA = PA + [kA]QA and SB = PB + [kB]QB, where kA
and kB are Alice’s and Bob’s respective private keys and [k] is the multiplication-by-k
operation. Having access to each others public keys then allows to compute their own
private generator on the other party’s curve, using ΦSB

(SA) = ΦSB
(PA)+[kA]ΦSB

(QA)
and ΦSA

(SB) = ΦSA
(PB)+[kB]ΦSA

(QB), which is always holds true since isogenies are

4

group homomorphisms. Extending the public parameters and each party’s public key
with those basis points therefore guarantees the privacy of their own private generator.

Now, one might wonder why the conventional DH key exchange works as it is, without
publishing any more parameters. The answer lies in the fact that the generator g as
well as the public keys ga and gb lie in the same group, in which both parties know
how to operate, i.e. apply multiplication, without having any information about a
nor b. Although in the SIDH protocol, the supersingular elliptic curves E0, E0/〈SA〉
and E0/〈SB〉 also lie in the same set S, the parties can only operate, i.e. build their
respective isogeny, if they know the image of their private generator SA or SB on their
current elliptic curve. In other words, the operation within the set of supersingular
elliptic curves S is more involved than the one of the multiplicative group (Z/pZ)×.

Outline. The previous overview in its brevity lacks several mathematical and im-
plementational details and concepts that are however necessary requirements for the
protocol to be mathematically well-defined and cryptographically applicable. In Sec-
tion 2.1, we will give a more precise collection of the mathematical concepts of SIDH

and list other necessary ingredients, like the isogenies used in SIDH. This will lead us
to introduce the notions of the j-invariant and the l-torsion of an elliptic curve, the
degree of an isogeny as well as isogeny graphs, visualising the operations in S.

Just like the DH protocol, the practicality and security of the SIDH key exchange
rely on the same three properties as mentioned before already: difficult computation
of shared secret given the public key, easy computation of a shared secret given one
private key, and the small size of stored parameters. We demonstrate the security
relevant components to the SIDH protocol in Section 6 while the practical resource
requirements, for optimised and more secure versions of SIDH as Supersingular Isogeny
Key Encapsulation (SIKE), are discussed in Section 5. Known attacks, both on SIDH

and SIKE, are presented in Section4.

2.1 Terminology, Notation and Prerequisites

The following section provides the notation and useful results from classical group the-
ory and/or cryptography required to rigorously understand the SIDH and SIKE protocol.

We will work on a Galois Field Fp2 for some prime p. For the sake of brevity, we
can think of this field as the field Fp(i), where i fulfils i2 + 1 = 0. Hence, elements of
Fp2 can be written as u+ iv for u, v ∈ Fp.

Definition 1 (Elliptic Curve). An Elliptic Curve E over a finite field K is the set of
solutions (x, y) ∈ K×K of the equation

y2 = x3 + ax2 + x, (1)

for a ∈ K. This representation is referred to as the Montgomery1 form and denoted
by Ea or Ea(K) to emphasize the underlying field.

We note that we will work subsequently on the projective field P2
K over K. A proper

derivation and definition of projective spaces is not in the scope of this report - however,

1There exist also other representations such as Weierstrass or Legendre for an elliptic curve.

5

for the sake of simplicity, the reader can think of the projective space as the field K2

equipped with a so-called point at infinity O, the neutral element with respect to the
group law2, i.e. the addition of points on an elliptic curve E.

Example 1 (point addition, [18], [3]). Let us consider the addition of two points
P1 = (x1, y1) and P2 = (x2, y2), with P1 6= P2 on a given elliptic curve Ea. Then
P3 = (x3, y3) := P1 + P2 has coordinates

x3 =
(y2 − y1)2

(x2 − x1)2
− a− x1 − x2 (2)

y3 =
(2x1 + x2 + a)(y2 − y1)

(x2 − x1)
− (y2 − y1)3

(x2 − x1)3
− y1. (3)

The addition has the geometric interpretation that the points P1, P2 and −P3,
satisfying P1 +P2−P3 = O, are the intersections with a line and the elliptic curve Ea.

Definition 2 (j-invariant, [3]). The j-invariant of an Elliptic Curve Ea in Montgomery
form is given by the term

j(Ea) = 256
(a2 − 3)3

(a2 − 4)
∈ K. (4)

Note that the computation of j(Ea) is performed in K and relies on the computation
of a multiplicative inverse. For K = Fp2 , the problem of finding a multiplicative inverse
in Fp2 can be reduced to finding one in Fp since

1

(u+ iv)
=

(u− iv)

u2 + v2
, (5)

where (u2 + v2)−1 ∈ Fp can be computed using the extended Euclidean algorithm.

Theorem 1 (uniqueness of the j-invariant, [17]). Every elliptic curve has a unique
j-invariant, and two elliptic curves are isomorphic if and only if they have the same
j-invariant.

Hence, j-invariants give us a nice way of uniquely characterizing elliptic curves.
Furthermore, as we will see in Section 2.2, points on an elliptic curve E with finite
order play a crucial role in the study of the SIDH and SIKE protocol. It is therefore
useful to consider the set of points on E with order n, the n-torsion.

Definition 3 (n-torsion, [17], Section 3.1). The n-torsion is given by

E[n] := {P ∈ E(K) | nP = O},

where K is the algebraic closure of the Galois field K and O is the point at infinity in
the projective space.

2Further details can for example be found in [17], Section 2.3.

6

Example 2 ([17], Section 3.1). With some assumptions to K (characteristic3 of K is
not 2), it follows that E[2] = {O, (e1, 0), (e2, 0), (e3, 0)}, since the points (ei, 0) have an
infinite slope on E. As an abstract group, this is isomorphic to Z2 × Z2.

The next theorem generalizes the results from above example.

Theorem 2 (n-torsion isomorphism, [17], Theorem 3.2). Let E be an elliptic curve
over K and let n be a positive integer. If the characteristic of K does not divide n, or
is 0, then

E[n] ∼= Zn × Zn. (6)

Definition 4 (Supersingular Elliptic Curve, [17], Section 3.1). We say that an Elliptic
Curve E over a field K with characteristic p is supersingular, if E[p] ∼= 0. Otherwise,
E is called ordinary and E[p] ∼= Zp.

Supersingular elliptic curves in characteristics p do not have points of order p, even
in the algebraic closure K. We will work with supersingular curves, as they have many
interesting properties. For example, the order (i.e. number of points) of supersingular
curves of characteristics p is (p+ 1) ([17], Corollary 4.32). Also the number of different
j-invariants can be calculated explicitly, which is stated in the next theorem.

Theorem 3 ([17], Corollary 4.40). The subset S ⊆ Fp2 containing all supersingular
j-invariants in Fp2 is of size κ := b p

12c+ z for some z ∈ {0, 1, 2}.

From Theorem 3 we get a set of κ j-invariants. Together with Theorem 1 we also get
a set of different (supersingular) elliptic curves which are unique up to isomorphism.
That is, for E1 such that j(E1) ∈ S, we have an isomorphism Ψ to another elliptic
curve, say E2

Ψ: E1 −→ E2

Ψ−1 : E2 −→ E1,

that fulfills j(E1) = j(E2). The isomorphism Ψ is a special case of a so-called isogeny.
Let us now turn our attention to general isogenies between elliptic curves.

Definition 5 (isogeny (abstract)). An isogeny between two elliptic curves E1 and E2

is a nonconstant homomorphism φ : E1 → E2 that is given by rational functions.

In particular, this means that φ([λ]P +[µ]Q) = [λ]φ(P)+[µ]φ(Q) for P,Q ∈ E1 and
the multiplication maps [λ] and [µ] i.e. a linear combination of points on E1 mapped
to the curve E2 is equivalent to the linear combination of the mapped points in E2.

Moreover, for (u, v) = φ(x, y), we get that u = r1(x) and v = yr2(x) for two rational

functions r1(x) = p(x)
q(x) and r2(x) = r(x)

s(x) .4 Based on this derivation, we are now able to
define the degree of an isogeny.

3The characteristic of a finite field is the smallest integer p such that (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
p times

= 0.

4This argument is elaborated in full detail in [17], Section 12.2.

7

Definition 6 (degree of an isogeny, [17], Section 12.1). The degree of an isogeny is
given by

deg(φ) = max(deg p(x),deg q(x)).

If the derivative r′1(x) is not the zero-map, we say that the isogeny is separable. In
this case, the degree is given by

deg(φ) = |ker(φ)|.

Isogenies of degree l will subsequently be denoted by l-isogenies.

We will subsequentially work with separable isogenies as they have nice properties
as shown in the following theorem:

Theorem 4 (one-to-one correspondence of isogenies, [3]). A separable isogeny is in
one-to-one correspondence with a finite subgroup, i.e. every subgroup G of points on
an elliptic curve E gives rise to a unique isogeny φ : E → E′ whose kernel is G (and
vice versa). We can therefore write the codomain as E′ = E/G.

Theorem 5 (Vélu’s formula, [17], Section 12.3). This theorem connects a given group
of points on an elliptic curve with separable isogenies such that this group of points is
the kernel of the separable isogeny and provides an explicit expression for this isogeny.
We do not state the whole theorem and the explicit formula here. Interested readers
can consult [17], Section 12.3.

Before brining our attention to the SIDH/SIKE key exchange, we present two useful
isogenies to carry out the protocol. In the following maps, we will leave away the
transformations of the y-coordinate since arithmetics on Montgomery elliptic curves
can be efficiently carried out with only the x-coordinate. In fact, any isogeny satisfies

(x, y) 7→ (f(x), cyf ′(x)), (7)

where f ′ is the der(ivative of f and c is a fixed constant.

Example 3 (point-doubling, [17], [3]). Let us consider the point-doubling formula of
a point P = (x, y) on a given elliptic curve Ea

[2] : Ea → Ea

x 7→ (x2 − 1)2

4x(x2 + ax+ 1)
.

(8)

Points of order two on Ea are those points, where y = 0. By simple calculations, we
get that there exist four points {O, (0, 0), (α, 0), (1/α, 0)} =: G, where α2 + αa+ 1 = 0
that are of order 2 on Ea, in accordance with to the 2-torsion (E[2] = G). If we now
input G together with Ea into Vélu’s formula, we get as output the unique isogeny with
kernel G (i.e. the [2]-map, a 4-isogeny) together with Ea itself. However, if we input
a subset of G, e.g. G′ = {O, (α, 0)} with α 6= 0 together with the curve Ea, we get as
output the following 2-isogeny:

[φ] : Ea → Ea′

x 7→ x(αx− 1)

x− α
,

(9)

for a′ = 2(1− 2α2). The y-coordinate can be recovered eq. (7) with c2 = α.

8

Example 4 (point-tripling, [17], [3]). Let us consider the point-tripling formula on a
given elliptic curve Ea

[3] : Ea → Ea

x 7→ x(x4 − 6x2 − 4ax− 3)2

(3x4 + 4ax3 + 6x2 − 1)2
.

(10)

If we now input all points of order 3 together with Ea into the Vélu formula, we get
as output the unique isogeny with kernel G (i.e. the [3]-map) together with Ea itself.
However, if we input a subgroup of G, e.g. G′ = {O, (β, γ), (β,−γ)} together with Ea,
we get as output the following 3-isogeny:

[φ] : Ea → Ea′

x 7→ x(βx− 1)

(x− β)2
,

(11)

for a′ = (aβ − 6β2 + 6)β. The y-coordinate can be recovered eq. (7) with c = α.

Note. Note that the point tripling method in Example 4 could also be achieved by a
sequential application of the point doubling method in Example 3 and the point addition
in Example 1. More general, every multiplication-by-k operation can be expressed as
a composition of point doubling and point addition.

9

2.2 SIDH Protocol

We still work on a Galois Field Fp2 for some prime p. We will denote a point on the
elliptic curve only by its x-coordinate. The respective y-coordinate can be obtained by
the application of the graph equation.

We now elaborate the protocol in full detail: We set p = 2eA3eB − 1 and work
on an initial (predefined) supersingular elliptic curve E0 in Montgomery form y2 =
x3 + ax2 + x.

Table 1 presents the protocol in a chronological way:

Alice Bob

Given: (public) generators PA, QA on
E0 of her subgroup
〈PA, QA〉 = E0[2eA] ∼= Z2eA × Z2eA

Given: (public) generators PB, QB on
E0 of his subgroup
〈PB, QB〉 = E0[3eB] ∼= Z3eB × Z3eB

Computes secret generator points
SA,0 = PA + [kA]QA for some private
key kA ∈ {0, . . . , 2eA − 1}

Computes secret generator points
SB,0 = PB + [kB]QB for some private
key kB ∈ {0, . . . , 3eB − 1}

Performing isogenies ΦA Performing isogenies ΦB

Sends to Bob:
(ΦA(E0),ΦA(PB),ΦA(QB))

Sends to Alice:
(ΦB(E0),ΦB(PA),ΦB(QA))

Sets ΦB(E0) as the new starting point
and computes S′A,0 = ΦB(SA,0) =
ΦB(PA) + [kA]ΦB(QA) (kA as above)

Sets ΦA(E0) as the new starting point
and computes S′B,0 = ΦA(SB,0) =
ΦA(PB) + [kB]ΦA(QB) (kB as above)

Performing isogenies ΦA Performing isogenies ΦB

Computes shared secret: j-invariant
corresponding to ΦA(ΦB(E0))

Computes shared secret: j-invariant
corresponding to ΦB(ΦA(E0))

Table 1: SIDH protocol

The steps ”Performing isogenies Φ” consist of the follwing procedure, which will be
explained in detail from the point of view of Alice.5

Performing isogenies Φ

1. Given SA,0 (which is a point in E0 of order 2eA) or S′A,0 (which is a point in
ΦB(E0) of order 2eA) as defined above with the secret integer kA, Alice applies

5The point of view for Bob can be elaborated analogically.

10

the point doubling operation6 (eA − 1)-times to SA,0 leading to a point of order
2, which we will denote by RA,0.

2. Using Vélu’s formula, she then obtains an isogeny φ0 : E0 −→ E1 := E0/〈RA,0〉
of degree 2 (as its kernel consists exactly of O and SeA−1

A,0).7

3. She then updates her starting points PA, QA to P ′A = φ0(PA), Q′A = φ0(QA). We
note that the order of these points does not change under φ - however the order
of SA,1 = φ0(SA,0) decreased by a factor of 2.

4. She then uses the new point SA,i and the curve Ei = Ei−1/〈RA,i−1〉 and recur-
sively iterates through this procedure by doubling the point SA,i until it has order
2 (always one doubling iteration less for each iteration) which will be denoted by
RA,i and then applies Vélu’s formula obtaining a 2-isogeny φi : Ei −→ Ei+1 =
Ei/〈RA,i〉 bringing her to the next elliptic curve.
This iteration is done eA times obtaining φ0, φ1, . . . , φeA−1. She then sets ΦA =
φeA−1 ◦ · · · ◦ φ0, which is a 2eA-isogeny by construction and maps from E0 to
EeA = ΦA(E0).

5. Her public key is then (ΦA(E0),ΦA(PB),ΦA(QB)), hence she maps the initial
curve E0 and Bob’s (public) initial basis points under her (secret) isogeny ΦA.
It is important that Alice and Bob also publish the image under Φ of the other’s
starting points Pi, Qi (i ∈ {A,B}). Unlike the traditional Diffie-Hellman, where
the exponent commute ((ga)b = (gb)a), this is no longer the case in SIDH (even
the codomains of ΦA and ΦB do not match hence a composition does not make
any sense). Moving the initial points through the isogenies allows to tackle this
problem: Alice (and Bob) is now able to redo the above procedure on a new
elliptic curve (after the exchange) EB (or EA for Bob), as she knows the images
of her starting point under Bob’s isogeny and can therefore determine the new
SA.

6. In the case where Alice and Bob perform the step ”performing isogenies Φ” after
the key exchange, the image of the initial basis points under Φ is no longer needed.

On the first sight, it may seem unintuitive, why Alice and Bob will land on the
very same j-invariant after following the protocol as described in Table 1. However,
the following result from classical group theory should underline why this is the case:

E/〈P,Q〉 ∼= (E/〈P 〉)/〈Φ(Q)〉,

for Φ : E −→ E/〈P 〉. In our case, we have that

(E0/〈SA,0〉)/〈ΦA(SB,0)〉 ∼= E0/〈SA,0, SB,0〉

and

(E0/〈SB,0〉)/〈ΦB(SA,0)〉 ∼= E0/〈SB,0, SA,0〉.
6Bob of course applies then the point-tripling operation on SB,0 respectively on S′B,0. More general,

Alice and Bob apply the multiplication-by-bi operation for i ∈ {A,B}.
7In general: of degree bA

11

Therefore, Alice and Bob will land on the same j-invariant corresponding to

E0/〈SA,0, SB,0〉.

We point out that the special form of p (namely that it only factors into primes bA and
bB plays a crucial role in above argument. If there would be a third prime factor, say
bC , above argument would no longer be valid.

Secret parameters The following parameters are kept secret:

• kA and kB respective SA and SB.

• The isogenies ΦA and ΦB.

• The common secret j-invariant corresponding to E0/〈SA,0, SB,0〉

Public parameters Before the two parties compute their shared secret, they agree
on multiple parameters over a public channel. These public parameters are:

• A field Fp2

By defining the field, we (implicitly) also define a set of different supersingular
j-invariants corresponding to different elliptic curves.

• A supersingular elliptic curve E0 over Fp2

On the set of different j-invariants, we define one to be our starting point/starting
curve. The supersingular j-invariants define the nodes of a supersingular l-isogeny
graph (l will be either 2 or 3), whose edges are l-isogenies (modulo isomorphisms)
between elliptic curves associated a j-invariant. The graph is both connected and
(l+1)-regular, meaning that there is a path between any two nodes and each node
has (l+ 1) (possibly degenerate) neighbouring nodes. The latter property follows
from the fact that the l-torsion E[l] of an elliptic curve E has (l + 1) subgroups.

• A prime p that is chosen as p = beAA beBB − 1
The prime is chosen as p = beAA beBB −1 such that we are guaranteed to find exactly
two subgroups with orders beAA and beBB (recall that the order of a subgroup divides
the order of the group itself). Commonly, we choose bA = 2, bB = 3 (in analogy
to l as above). The parameters eA and eB are chosen such that p is large (see
sect. 6). The choices of bA, bB, eA and eB restrict the potential walks in the
supersingular isogeny graph. The walk of both Alice and Bob starts at the node
j0. Alice’s secret key selects one particular walk through a bA-isogeny graph with
eA steps. Analogously, Bob’s secret key selects one particular walk through a
bB-isogeny graph with eB steps. Guessing one party’s walk is unlikely since in
general, each vertex defines bA + 1 or respectively bB + 1 (possibly degenerate)
edges.

• Alice’s and Bob’s starting points (PA, QA) and (PB, QB)
Although the private keys kA and kB (and therefore the generator points SA and
SB) are secret, the basis elements (PA, QA) and (PB, QB) of the two dimensional

12

eA- and eB-torsion are public. The propagated basis points (Φ(P),Φ(Q)) for Alice
and Bob respectively are also public, as they are shared with their public key.
This concept is missing in the classical Diffie-Hellman key exchange since there,
all computations are performed in the same group. Here however, we go from one
group, the respective elliptic curve, to another through the isogeny maps. For
the two parties to continue their respective calculations in different groups, it is
necessary to know how their secret generating point transforms under isogenies.
There is the dilemma that only Alice knows how Bob’s secret generator transforms
under her beAA -isogeny. Instead of B revealing his secret generator SB he can reveal
his basis points and keep the particular linear combination secret. Since isogenies
are group homormorphisms, he can reconstruct his secret generator on Alice’s
destination curve without knowing her isogeny and without Alice knowing his
secret generator.

• The public keys (ΦA(E0),ΦA(PB),ΦA(QB)) and (ΦB(E0),ΦB(PA),ΦB(QA))
of Alice and Bob

3 From SIDH to SIKE

The transition from the SIDH to the SIKE protocol is motivated by a potential security
flaw in SIDH [6]: If one of the two parties, say Alice, involved in the key exchange keeps
reusing their secret key kA, Bob can then iteratively generate tampered public keys to
reconstruct Alice’s secret key kA:
Suppose Bob wants to find Alice’s secret kA - the plan is to do this bit by bit, write kA =∑eA−1

j=0 αj2
j . As a first step, Bob wants to find α0. For this, he computes his public key

(ΦB(E0),ΦB(PA),ΦB(QA)) but instead of sending this (honest) public key to Alice, he
will provide her with a tampered version by adding an order-two point to ΦB(QA), as for
example 2eA−1ΦB(PA), such that: PK ′B =

(
ΦB(E0),ΦB(PA),ΦB(QA)+2eA−1ΦB(PA)

)
.

Alice will then, in her next step, compute SA = ΦB(PA)+[kA](ΦB(QA)+2eA−1ΦB(PA)).
Now we see that since [kA]2eA−1ΦB(PA) = 0 ⇐⇒ α0 = 0, the protocol succeeds (i.e.
Alice and Bob end up on the same curve) if and only if kA is even. Working with
similar tricks, Bob can go on and discover α1, . . . , αeA−3, the remaining two bits can be
found by brute force. To protect herself against such attacks, Alice can either change
her secret kA every time she participates in the SIDH protocol or she can find a way
to check that the public key she receives from Bob has been generated in an honest
way. This leads us to SIKE (supersingular isogeny key encapsulation), where Bob has
to use Alice’s public key and his secret kB to do his part of the protocol before he sends
anything to Alice. More precisely, he chooses a random value m and constructs his
private key in dependence of Alice’s public key: kB = H(PKA,m). The public key he

then provides to Alice is
(
PKB, H

′(j)⊕m
)

, where ⊕ denotes the XOR operation. Note

that Bob calculates the shared secret j = j(EAB) before sending anything to Alice and
that his random value is encapsulated in the public key by XORing it with H ′(j). Alice
can use that that information to compute the shared secret j and recover Bob’s random
value m by simple XORing. Knowing that value, she can re-generate Bob’s public key

13

and verify that he did not tamper with the protocol. Note that key encapsulation makes
the protocol less symmetric in the sense that only one of the participants gets to re-use
their key while the other should change it after each iteration as it is actually shared
with the counterparty during execution. In practice, such an asymmetric scenario is
beneficial when one party (server) communicates with many clients as it reduces the
computational effort.

4 Known Attacks

In this section we describe the two most prominent classical attacks against the SIDH

and SIKE protocol. In the quantum world, these attacks are slightly faster but do
not yield exponential speed-up. In general, the security of a cryptographic protocol is
compromised when parts of any private parameters, such as private keys or the share
secret, can be intercepted. In the context of isogeny based cryptography, the underlying
mathematical problem to solve is the following:

Given two supersingular elliptic curves E0, EA which are beAA -isogenous,
find a connecting isogeny.

Note that given the isogeny, an attacker can use Velu’s formula/theorem to find the
corresponding subgroup of E0 whose generator is the secret key. The fact that we con-
sider supersingular curves is an essential part of the security. There is a subexponential
quantum algorithm for the ordinary case, but only an exponential quantum algorithm
for the supersingular case. The latter is described in Section 4.3. More mathematical
details can be found in [7].

4.1 Meet-in-the-middle attack

In the situations we consider for the SIKE and SIDH protocol, we are work on super-
singular elliptic curves over a finite field Fp2 with p = beAA beBB − 1. While there are
O(p) (isomorphism classes of) supersingular elliptic curves over Fp2 , only O(

√
p) are

connected to the initial curve E0 by beAA -isogenies (because such isogenies are in 1:1

correspondence to subgroups of E0 with order beAA of which there are (bA − 1)beA+1
A).

Hence, thinking of a graph whose vertices are supersingular elliptic curves and edges
correspond to degree - bA isogenies, possible endpoints of paths starting from the initial
curve are increasingly sparse as p gets large. To find the path Alice has traveled to
go from E0 to EA (which has length eA), we save all paths of length beA/2c going out
from E0 and walk one-by-one from EA on paths of length deA/2e, always checking if
the endpoint is in the saved list. If it is, we have found Alice’s beAA -isogeny E0 → EA.
Overall, this gives an attack which requires O(p1/4) memory and runs in O(p1/4). The
O(p1/4) memory requirement shows that this attack is not realistic for sizes considered
here (in the smallest case of SIKEp434 we would need to store > 2108 bits which is not
feasible.) Therefore it has been suggested to fix an upper bound on memory available
(like a still unrealistic 280 units) and check the runtimes of the best algorithms under
these conditions.

14

4.2 Van Oorschot-Wiener Collision Finding

Assuming a memory capacity of 280, there is a better way to fill it than to do meet-
in-the-middle until it’s full and replace certain elements when capacity is reached. We

introduce a set S containing all (j-invariants of) curves which are either b
eA/2
A -isogenous

to E0 or EA. Of this elements, we choose in some way 280 distinguished elements which
are the only ones we will allow ourselves to write to memory. The second ingredient
will be a deterministic pseudo-random function f : S → S which takes xi ∈ S, feeds
it into a hash function and then uses the resulting first bit to decide if the new curve
f(xi) will be isogenous to E0 or EA and the remaining bits will be used to choose an
isogeny (i.e. a subgroup which will be the kernel of the isogeny). For the process, we
start at a random x0 ∈ S and apply f until we reach a distinguished element xn ∈ S
which is then written to memory together with the starting element x0. If we find
x 6= y ∈ S such that f(x) = f(y) = z and x, y are isogenous to E0, EA respectively,
then z is a mid-point between E0, EA in the isogeny graph. Most probably, z will not
be a distinguished element. However, since f is deterministic, the walk from z to a
distinguished element zdist will be equal both times. So the first time we go through z
we will write to memory (x1, zdist), the second time we will write (x2, zdist) so that we
can recover x and y by walking (using f) from x1, x2.

The general problem of finding (for given functions f : A → B and g : C → B)
points a ∈ A, c ∈ C such that f(a) = g(c) is called the claw problem. The collision
finding algorithm above is a solver which classically runs in O(p1/4). In the quantum
world, the runtime can be reduced to O(p1/6) (Tani’s algorithm).

4.3 Quantum attack : Grover search

We can formulate the problem of finding a certain isogeny between two supersingular
elliptic curves E0, EA so that it can be solved by Grover’s search algorithm. Recall that
Grover’s quantum search algorithm finds the unique value x which is mapped to 1 by
a function f : X → {0, 1} in quantum time O(

√
|X|). In our setting, we can define

X to be all pairs (φ1, φ2) of b
eA/2
A -isogenies with domain E0, respectively EA and the

function f : X → {0, 1} has f((φ1, φ2)) = 1 if and only if j(ϕ1(E0)) = j(ϕ2(EA)). Since

there are (bA + 1)b
(eA−1)
A ∼ p1/4 subgroups in E (and these are in 1:1 correspondence

to isogenies), Grover’s algorithm finds our isogeny in O(
√
|X|) ∼ p1/4 (note that X

consists of pairs of isogenies, so |X| ∼ p1/2).
Despite the quantum version of Tani’s collision finding algorithm is faster than

Grover search (O(p1/6) compared to O(p1/4)), it turns out that Grover search is in fact
more cost-effective considering other cost functions (including space/gate count).

5 Resource Requirements

5.1 Memory

The SIKE algorithm starts from an initial curve and the public parameters Pi and Qi

for Alice and Bob. For efficiency reasons, it is represented as a triplet of field elements

15

(Pi, Qi, Ri). This section presents the four sets of parameters SIKEp434, SIKEp503,
SIKEp610, and SIKEp751, named so because of the bit length of the underlying prime
field. In each case, the parameters are: the prime p, the values e2 and e3 and the x-
and y-coordinates of the points (Pi, Qi, Ri) of which each coordinate consists of two
values describing it as a complex number. All these parameters can be found in the
source code of Microsoft’s implementation of SIKE (e.g. P434.c in [11]).

First, in Table 2 we reproduced the sizes, in terms of bytes, of the different inputs
and outputs required by the key encapsulation mechanism (KEM) as presented in
the SIKE documentation. The public key consists of P,Q and R encoded by their x-
coordinates only. Hence,the size of the public key (in bytes) is calculated as 3 ∗ 2 ∗Np

where Np = dlog2 pe. The secret key is stored as a concatenation of the random
message m of the KEM (see Section 3), the private key k and the public key pk of
Bob. The concatenation is necessary in order to comply with NIST’s API guidelines.
NIST’s decapsulation API does not include an input for the public key, so it needs
to be included as part of the secret key. The byte length of randomly chosen value
m is defined in the code for each parameter set of SIKE. For Alice, the private key
corresponds to integers in the range (0,1,. . . ,2e2 − 1). It is therefore encoded as an
octet string of length N = ds/8e with s = blog2 2e2 = e2c. For Bob, the private key
corresponds to integers in the range (0,1,. . . ,3e3 − 1). It is therefore encoded as an
octet string of length N = ds/8e with s = blog2 3e3c. In this setting, Bob uses the
static secret and Alice performs the key encapsulation (names are swapped compared
to Section 3). It is advantageous to execute Bob’s isogeny first and only once for the
static key as it is computationally more intense.

It turns out that we can actually compress the public keys much further by focusing
on the second and third element in the public key. The high level idea is that the Fp2

elements used to transmit the points φ(P) and φ(Q) are rather large compared to the
size of the integer coefficients that are needed to represent them with respect to a
given basis. In such a basis, the points can be represented as: φ(P3) = [α]R + [β]S
where coefficients α and β are integers in the range (0,1,. . . ,3e3 − 1). With some more
technical details, the compressed public key can be stored as three times the byte size
of the coefficient, the byte size Np2 = 2 × Np of a field element and three additional
bytes. The secret key is again a concatenation of m, the private key k of Bob, the
compressed public key cpk and an additional field element. Using this, we reproduced
the key sized for the compressed implementation as shown in Table 3.

Scheme public key
random
value

private
key

secret key
shared
secret

e2 e3 pk m k
sk

(m, k,pk)
ss

SIKEp434 216 137 330 16 28 374 16
SIKEp503 250 159 378 24 32 434 24
SIKEp610 305 192 462 24 38 524 24
SIKEp751 372 239 564 32 48 644 32

Table 2: Size (in bytes) of inputs and outputs in SIKE.

16

Scheme
compressed
public key

random
value

private
key

compressed
secret key

shared
secret

e2 e3 cpk m k
csk

(m, k, cpk)
ss

SIKEp434 216 137 197 16 27 350 16
SIKEp503 250 159 225 24 32 407 24
SIKEp610 305 192 274 24 39 491 24
SIKEp751 372 239 335 32 47 602 32

Table 3: Size (in bytes) of inputs and outputs in the compressed implementation of
SIKE.

5.2 Performance

We evaluated the performance of the optimized and x64-assembly implementations by
running the provided benchmarking tests on a machine at our disposal. The machines
was powered by a 2.7 GHz Intel Core i5-5350U (Broadwell) processor. We found that
our results are in good agreement with the performance test in Table 2.1 of [11], which
was run on a 3.4GHz Intel Core i7-6700 (Skylake).

Implementation using x64 assembly

Key generation Encapsulation Decapsulation
SIKEp434 5 570 8 996 9 668
SIKEp503 7 592 13 148 14 054
SIKEp610 14 143 26 288 26 184
SIKEp751 23 909 38 615 41 134

Table 4: Performance (in thousands of cycles) of SIKE on a 2.7 GHz Intel Core i5-5350U
(Broadwell) processor. Cycle counts are rounded to the nearest 103 cycles.

In order to assess the performance requirement of SIKE, we compared it with classi-
cal Ellptic Curve (EC) key exchange for 256-bit prime provided on [5]. Both, SIKEp434
and the reference correspond to a AES-128 symmetric key exchange and therefore the
NIST security level 1. For SIKEp434, the number of cycles are taken as the sum from
Table 4. For EC, the cycles for key pair generation and shared secret computation are
given in [5] for a similar 2015 Intel Core i5-5350U (Broadwell) processor. The total
number of cycles is calculated from two key pair generations and two shared secret
computation. The comparison is shown in Table 5.

Compared to other post-quantum cryptographic protocols, SIKE is computationally
more expensive than competing alternatives. The implementation of [11] needs O(103)
milliseconds (ms) for encapsulation and decapsulation. An implementation on 32-bit
ARM Cortex-M4 microcontroller has benchmark results of 184 million clock cycles (i.e.
1.09 seconds @168MHz) [16]. However, new architectures ([12]) may reduce that gap
significantly, demonstrating that SIKE, which features the smallest public keys in the
NIST PQC process, can be efficiently implemented for embedded applications.

17

prime
bits

secret key
bytes

public key
bytes

shared secret
bytes

cycles

EC 256 32 64 64 ∼ 4 000 000
SIKE 434 330 374 16 ∼ 25 000 000

Table 5: Comparison of key lengths and cycle count for classical Elliptic Curve with
256-bit prime and SIKEp434, both corresponding to security level 1 (AES-128).

5.3 Power

The submission [4] includes an additional implementation for the ARM Cortex-M4
processor in which the field arithmetic is written with hand-optimized ARMv7 assem-
bly targeting the Cortex-M4 processor. These cores are optimized for low-cost and
energy-efficient microcontrollers which have been implemented in many devices. The
implementation of SI;E needs O(108) cycles for key generation, encapsulation and de-
capsulation. All parameter sets lead to an energy consumption between 70 and 80 mW
during the run.

6 Security analysis

As a reminder for the reader: The current state-of-the-art in cryptanalysis against
SIDH takes on the problem of computing the corresponding isogeny for two le-isogenous
curves E an E′ in the supersingular isogeny graph.

The following table shows time estimates of the classical attacks described in section
4 for a prime p ∼ 2448 of length 448 bits. This means that with a 448-bit prime p, we
get classical 128-bit security.

Processors Space Total Time

Meet-in-the-middle
48
48
64

64
80
80

154
138
138

VoW Collision Finding
48
48
64

64
80
80

136
128
128

Table 6: Time Complexity of Attacks against 2-Isogeny Problem for p ∼ 2448. All
numbers in log2-scale.

NIST anticipates that there will be significant uncertainties in estimating the se-
curity strengths of post-quantum cryptosystems. Therefore, NIST will base its classi-
fication on the range of security strengths offered by the existing NIST standards in
symmetric cryptography (see 4.A.5 Security Strength Categories in the Call for Propos-
als ([13])). Here, computational resources may be measured using a variety of different
metrics (e.g., number of classical elementary operations, quantum circuit size, etc.).
Also, NIST has suggested that one quantum gate can be assigned a cost equivalent to
O(1) classical gates. The number of gates (size) of a quantum circuit is calculated as
width (space) times depth (time). [8] provides an estimation for number of qubits for

18

NIST level
classical

gates
reference

algorithms
factoring

discrete logarithm Elliptic
curve

SIKE
key group

1 2143 AES-128 3 072 256 3 072 256 SIKEp434

2 2146 SHA3-256 SIKEp503

3 2207 AES-192 7 680 384 7 680 384 SIKEp610

5 2272 AES-256 15 360 512 15 360 512 SIKEp751

Table 7: Comparison of NIST security levels (in terms of classical gates for PQC) of
SIKE parameter sets with classical key exchange protocols (sizes in bits).

reversible circuits that implement the full Advanced Encryption Standard AES-k. To
classify PQC, NIST suggests an approach where quantum attacks are restricted to a
fixed running time, or circuit depth. Call this parameter MAXDEPTH. This restriction is
motivated by the difficulty of running extremely long serial computations. Plausible
values for MAXDEPTH range from 240 logical gates (the approximate number of gates
that presently envisioned quantum computing architectures are expected to serially
perform in a year) through 264 logical gates (the approximate number of gates that
current classical computing architectures can perform serially in a decade), to no more
than 296 logical gates (the approximate number of gates that atomic scale qubits with
speed of light propagation times could perform in a millennium). In addition to the
classical case described above, we estimate the cost of an attack against SIDH using
Grover search because it turns out (see [1]) that although it runs in O(p1/4 compared
to Tani’s algorithm’s O(p1/6), it’s still more cost-effective because it needs much less
memory. With MAXDEPTH of 2D, using Grover search to attack the protocol for a k-bit
prime would require (2k/4/2D)2 quantum circuits. This means that an 448-bit prime
would require (2112/240)2 = 2144 quantum circuits and corresponds to classical 128-bit
security.

Only [10] gives concrete cost estimates for solving the computational supersingular
isogeny problem in different scenarios imposing a depth restriction on quantum circuits.
They convert a quantum circuit model in a classical random access machine (RAM)
which acts as a controller for memory peripheral such as an array of bit or quibits.
Allowing depth 296 for example, they conclude that no known quantum algorithm
can break SIKE in their model of computation with less than 2143 classical gates for
SIKEp434. These results lead to the classification shown in Table 7 used throughout
the report.

In Table 7, we categorize the SIKE parameter sets in NIST’s security levels and
compare it with classical protocols such as DH based on discrete logarithm, ECC or
RSA. The values of the reference protocols are provided in [2]. From the KEM (see
Section 3), we see that the size of the random value m defines an upper bound for the
strength of the protocol by a brute-force exploitation. However, as described above,
algorithms that attack on the isogeny computation can do significantly better.

19

7 Conclusion

In this report we have given an introduction to isogeny based cryptography, namely the
SIDH key exchange as well as the improved SIKE protocol, resolving potential security
flaws with an additional focus on enhanced performance. We have summarised state-
of-the-art attacks on SIKE and have shown that even with quantum speed-ups the
protocol satisfies current standards. Other cryptographic parameters, as key size and
computational resource requirements were discussed in detail, providing comparisons
within SIKE’s own security levels and the classical Diffie-Hellman key exchange.

In conclusion, regarding the NIST’s mission of establishing a security standard in
a post-quantum world, one can say that in general, SIKE has two main advantages:
The key sizes to achieve security levels targeted by NIST are comparatively small
(e.g. 564B public keys/48B private keys for security level 5, where other candidates in
round 2/3 of the NIST competition require key lengths in the kB/MB range). Also,
since elliptic curves have already been used for years in cryptographic applications, we
can assume that there will be less implementation-specific vulnerabilities as an engineer
with experience in ECC should be able to implement SIKE safely without much trouble.
On the other hand, there is a tradeoff: we pay for very small keysizes with increased
(compared to other protocols) runtimes by a factor of around 100. Hence SIKE is
especially suitable in situations where space/bandwidth is more of a rare commodity
than computing power.

20

References

[1] G. Adj, D. Cervantes-Vázquez, J.-J. Chi-Domı́nguez, A. Menezes, and
F. Rodŕıguez-Henŕıquez. On the cost of computing isogenies between super-
singular elliptic curves. Cryptology ePrint Archive, Report 2018/313, 2018.
https://eprint.iacr.org/2018/313.

[2] BlueKrypt. Cryptographic Key Length Recommendation. https://www.

keylength.com/en/4/, 2020. [Online; accessed 28-August-2020].

[3] C. Costello. Supersingular isogeny key exchange for beginners. In K. G. Paterson
and D. Stebila, editors, Selected Areas in Cryptography – SAC 2019, pages 21–50,
Cham, 2020. Springer International Publishing.

[4] David Jao. Sike specifiation document. https://sike.org/files/SIDH-spec.

pdf, 2020. [Online; accessed 30-August-2020].

[5] ECRYPT-EU. eBACS: ECRYPT Benchmarking of Cryptographic Systems.
https://bench.cr.yp.to/results-dh.html, 2020. [Online; accessed 28-August-
2020].

[6] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti. On the security of supersin-
gular isogeny cryptosystems. In J. H. Cheon and T. Takagi, editors, Advances in
Cryptology – ASIACRYPT 2016, pages 63–91, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[7] S. D. Galbraith and F. Vercauteren. Computational problems in supersingular
elliptic curve isogenies. Cryptology ePrint Archive, Report 2017/774, 2017. https:
//eprint.iacr.org/2017/774.

[8] M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt. Applying grover8217;s
algorithm to aes: quantum resource estimates. In Proceedings of the 7th In-
ternational Conference on Post-Quantum Cryptography (PQCrypto’16), Fukuoka,
Japan, volume 9606 of Lecture Notes in Computer Science, pages 29–43. Springer,
September 2016. See also arXiv preprint arXiv:1512.04965.

[9] D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In B.-Y. Yang, editor, Post-Quantum Cryptography,
pages 19–34, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[10] S. Jaques and J. M. Schanck. Quantum cryptanalysis in the ram model: Claw-
finding attacks on sike. Cryptology ePrint Archive, Report 2019/103, 2019. https:
//eprint.iacr.org/2019/103.

[11] P. Longa. PQCrypto-SIDH v3.3. https://github.com/Microsoft/

PQCrypto-SIDH, 2020. [Online; accessed 31-August-2020].

[12] P. M. C. Massolino, P. Longa, J. Renes, and L. Batina. A compact and scalable
hardware/software co-design of sike. Cryptology ePrint Archive, Report 2020/040,
2020. https://eprint.iacr.org/2020/040.

21

https://eprint.iacr.org/2018/313
 https://www.keylength.com/en/4/
 https://www.keylength.com/en/4/
https://sike.org/files/SIDH-spec.pdf
https://sike.org/files/SIDH-spec.pdf
 https://bench.cr.yp.to/results-dh.html
https://eprint.iacr.org/2017/774
https://eprint.iacr.org/2017/774
https://eprint.iacr.org/2019/103
https://eprint.iacr.org/2019/103
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH
https://eprint.iacr.org/2020/040

[13] NIST. Post-Quantum Cryptography. https://

csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization, 2020. [Online; accessed
31-August-2020].

[14] NIST. Post-quantum cryptography standardization process: Third
round candidate announcement. https://csrc.nist.gov/News/2020/

pqc-third-round-candidate-announcement, 2020. [Online; accessed 31-
August-2020].

[15] J. Renes. Computing isogenies between montgomery curves using the action of
(0,0). Cryptology ePrint Archive, Report 2017/1198, 2017. https://eprint.

iacr.org/2017/1198.

[16] H. Seo, M. Anastasova, A. Jalali, and R. Azarderakhsh. Supersingular isogeny
key encapsulation (sike) round 2 on arm cortex-m4. Cryptology ePrint Archive,
Report 2020/410, 2020. https://eprint.iacr.org/2020/410.

[17] L. C. Washington. Elliptic Curves: Number Theory and Cryptography, Second
Edition. Chapman amp; Hall/CRC, 2 edition, 2008.

[18] Wikipedia. Montgomery curve — Wikipedia, the free encyclopedia. http://en.

wikipedia.org/w/index.php?title=Montgomery%20curve&oldid=950440406,
2020. [Online; accessed 31-August-2020].

22

 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
 https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://eprint.iacr.org/2017/1198
https://eprint.iacr.org/2017/1198
https://eprint.iacr.org/2020/410
http://en.wikipedia.org/w/index.php?title=Montgomery%20curve&oldid=950440406
http://en.wikipedia.org/w/index.php?title=Montgomery%20curve&oldid=950440406

A Python Implementation

Attached to this report is a Python implementation of the SIDH protocol, for a simple
set of public parameters, following the definitions in [3]. The code comes with five
different classes:

GFp(x,p) implements the element x mod p of the field Fp over a prime p and its oper-
ations, including multiplicative inversion.

GFp2((u,v),p) implements the element u+iv mod p of the field Fp2 over a prime p and
its operations, including multiplicative inversion (see eq. (5)) and a naive (and
slow) computation of the modular square root (required for the computation of
the y-coordinate under the 2-isogeny).

MontgomeryEllipticCurve(a) implements the elliptic curve E(a) over Fp2 in Mont-
gomery form given the parameter a ∈ Fp2 including the computation of its j-
invariant (see eq. (4)) and the transformations of the curve under a 2- or 3-isogeny
(given the x-coordinate of the non-neutral element in corresponding kernel, see
eqs. (9) and (11))).

EllipticCurvePoint((x,y),E,is infinity=False) implements a point (x, y), with x, y ∈
Fp2 or the neutral element O (is infinity=True) of the group of points on the
elliptic curve E, the group law of addition including multiplication by a positive
integer (see eqs. (2) and (8)) and the transformation of the point under a 2- or
3-isogeny (given the x-coordinate of the non-neutral element in corresponding
kernel, see eqs. (9) and (11))).

SupersingularIsogenyGraphWalker(a,e 2,e 3,b 2 torsion,b 3 torsion) and its mem-
ber function perform l isogeny walk(l,key,public key=None) implement a walk
through a l = 2- or l = 3-isogeny graph with e 2 and e 3 steps, defined by the
prime p = 2e23e3 − 1, the basis of the 2eA- and 3e3-torsion b 2 torsion = (P2, Q2)
and b 3 torsion = (P3, Q3) on a initial Montgomery curve with parameter a, a
key. If a public key = (a prime,b l torsion prime) is specified, the l-isogeny walk
is performed according to the image of the original basis b l torsion prime on the
Montgomery curve with parameter a prime. The index 2 traditionally refers to
Alice and 3 to Bob.

The code can carry out the SIDH key exchange protocol, as described in sect. 2.2,
for arbitrary keys8. First, each of the two party’s isogeny walk is performed, given the
initial public parameters, which generates their respective public keys. Then follows
another isogeny walk for each of the two parties, given the other parties public key,
which generates their shared secret. One can check that the key exchange was successful
by comparing two party’s result for the shared secret.

8In the current version of the script Alice’s private key, key 2, can only be chosen odd. This is due
to the fact that even keys will generate a 2-isogeny corresponding to the kernel {O, (α, 0)} with α = 0,
for which eq. (9) cannot be applied. Odd values for key 2 however, always satisfy α 6= 0. The correct
2-isogeny for α = 0 can be computed with Vélu’s formulas and is given on page 10 in [15] following [9]
for a general Montgomery curve by2 = x3 + ax2 + x. Since currently, we only support b = 1, one has
to compose the isogeny with another isomorphism to make it directly compatible with our code.

23

The initial parameters for the prime p, the Montgomery parameter a and the bases
of the 2e2- and 3e3-torsion can in principle be replaced with any other allowed choice
satisfying the mathematical constraints. Remember though that a valid protocol has
to satisfy that the prime has a decomposition p = 2e23e3 − 1, the curve is supersingular
and the basis points are in their respective 2e2- and 3e3-torsion. In practice, therefore,
these parameters should only be changed if it is understood that these mathematical
constraints are indeed fulfilled.

24

	Introduction
	Supersingular Isogeny Diffie-Hellman Key Exchange
	Terminology, Notation and Prerequisites
	SIDH Protocol

	From SIDH to SIKE
	Known Attacks
	Meet-in-the-middle attack
	Van Oorschot-Wiener Collision Finding
	Quantum attack : Grover search

	Resource Requirements
	Memory
	Performance
	Power

	Security analysis
	Conclusion
	Python Implementation

